6 M. Albrecht, Chem.–Eur. J., 2000, 6, 3485–3489.
7 (a) T. Mochizuki, T. Nogami and T. Ishida, Inorg. Chem., 2009, 48,
2254–2259; (b) E. Pardo, J. Ferrando-Soria, M.-C. Dul,
R. Lescouezec, Y. Journaux, R. Ruiz-Garcı
´
n and C. Ruiz-Perez,
a, J. Cano, M. Julve,
´
¨
F. Lloret, L. Canadillas-Delgado, J. Pasa
Chem.–Eur. J., 2010, 16, 12838–12851.
´
8 (a) M. Va
M. R. Bermejo, Inorg. Chem. Commun., 2008, 11, 995–998;
(b) M. Martınez-Calvo, A. M. Gonzalez-Noya, R. Pedrido,
M. R. Bermejo, M. J. Romero, M. I. Fernandez, G. Zaragoza
and M. R. Bermejo, Dalton Trans., 2010, 39, 1191–1194.
9 J. S. Casas, M. S. Garcıa-Tasende and J. Sordo, Coord. Chem.
Rev., 2000, 209, 197–261.
10 (a) M. R. Bermejo, A. M. Gonza
M. J. Romero and M. Vazquez, Angew. Chem., Int. Ed., 2005, 44,
4182–4187; (b) R. Pedrido, M. R. Bermejo, M. J. Romero,
M. Vazquez, A. M. Gonzalez-Noya, M. Maneiro, M. J. Rodrıguez
and M. I. Fernandez, Dalton Trans., 2005, 572–579; (c) R. Pedrido,
A. M. Gonzalez-Noya, M. J. Romero, M. Martıınez-Calvo,
M. Vazquez Lopez, E. Gomez-Forneas, G. Zaragoza and
M. R. Bermejo, Dalton Trans., 2008, 6776–6787; (d) M. R. Bermejo,
A. M. Gonzalez-Noya, M. Martınez-Calvo, R. Pedrido, M. J. Romero
and M. Vazquez Lopez, Eur. J. Inorg. Chem., 2008, 3852–3863.
11 R. Pedrido, M. J. Romero, A. M. Gonzalez-Noya, M. R. Bermejo,
M. Martınez-Calvo and G. Zaragoza, Inorg. Chem., 2009, 48,
´
zquez, G. Zaragoza, R. Pedrido, G. Rama and
´
´
Fig. 4 Sequential self-assembly of a 2D grid-of-mesocates through
´
complementary hydrogen bonding.
´
also result in a unique and new square-shaped grid arrange-
ment (Fig. 4). In addition, two-level sequential self-assembly
has proven to be an appropriate strategy to gain a more in
depth knowledge of the factors involved in the formation of
new hydrogen-bonded supramolecular arrays.
´
lez-Noya, R. M. Pedrido,
´
´
´
´
´
In summary, we have successfully obtained a new type of
extended supramolecular 2D array, the ‘‘grid-of-mesocates’’,
by using conveniently functionalised ligands and applying the
‘‘sequential self-organization strategy’’. We strongly believe
that this approach could open new perspectives for the
spontaneous, but controlled, generation of large organised
arrays with the aim of obtaining new functional nanomolecular
architectures. Further experiments aimed at increasing the ‘‘grid
of mesocates’’ dimensions are ongoing in our laboratories.
Financial support from the Xunta de Galicia
(10PXIB262132PR) and the Spanish Ministerio de Ciencia e
´
´
´
´
´
´
´
´
´
´
´
´
10862–10864.
12 C. Oldham and D. G. Tuck, J. Chem. Educ., 1982, 59, 420–421.
13 A solution of the ligand (0.1 g, 0.19 mmol) in acetonitrile (80 cm3),
containing 10 mg of tetraethylammonium perchlorate (CAUTION:
although no problem was encountered in this work, all perchlorate
compounds are potentially explosive and should be handled with
great care), was electrolyzed for 62 minutes using a current of 10 mA.
The resulting green solid was filtered off, washed with diethyl ether
and dried in vacuo. Co2(Lb)2ꢀH2O (1ꢀH2O): Yield: 0.084 g (74%).
Anal. Co2C52H54N12S4O5 requires: C, 53.2; H, 4.6; N, 14.3; S, 10.9.
Found: C, 53.1; H, 4.6; N, 14.3; S, 10.8%. MS MALDI-TOF (m/z)
578.2 [ML], 1155.1 [M2L2]; IR (KBr, cm–1): n(OH) 3417 (w),
n(NH) 3317 (m), n(CQN + C–N) 1593 (w), 1509 (s), 1483 (m),
n(CQS) 1100 (w), 798 (w), n(N–N) 1044 (m); 1H NMR dH
(CD3CN): 140.36, 118.00, 108.63, 78.88, 62.00, 32.92, 31.16,
20.91, 19.55, 17.04, 16.00, 11.28, 10.00, 9.23, 7.62, 6.91, 6.23,
5.93, 3.16, 0.63, ꢂ16.63, ꢂ23.01, ꢂ31.10, ꢂ35.45, ꢂ48.40,
ꢂ61.50; LM (mS cm2) = 5.6; m(B. M.) = 4.1.
Innovacion and ERDF(EU) (CTQ2010-19191) is acknowledged.
´
Notes and references
z Crystal data for [Co2(Lb)2] 1: (Co2C52H52N12O4S4), Mw = 1155.20,
3
%
crystal dimensions: 0.52 ꢁ 0.16 ꢁ 0.04 mm , triclinic, P1, a =
9.1069(5), b = 10.9220(5), c = 14.6964(9) A, a = 73.752(2), b =
79.577(3), g = 65.667(2)1, V = 1275.13(12) A3, Z = 1, m = 0.874 mm–1,
F(000) = 598. Radiation l(Mo-Ka) = 0.71073 A, T = 100 K,
reflections collected/unique 42 121/5021 (Rint = 0.042), R (all data) =
0.042, wR (all data) = 0.083, GOF = 1.04, max minꢂ1 residual density
0.72/ꢂ0.36 e A–3. CCDC 828824.
14 (a) M. Albrecht and S. Kotila, Angew. Chem., Int. Ed. Engl., 1995,
34, 2134–2137; (b) J. Xu, T. N. Parac and K. N. Raymond, Angew.
Chem., Int. Ed., 1999, 38, 2878–2882; (c) J. Fielden, D.-L. Long,
C. Evans and L. Cronin, Eur. J. Inorg. Chem., 2006, 3930–3935;
(d) S. P. Argent, H. Adams, T. Riis-Johannessen, J. C. Jeffery,
L. P. Harding, W. Clegg, R. W. Harrington and M. D. Ward,
Dalton Trans., 2006, 4996–5013; (e) T. K. Ronson, H. Adams,
T. Riis-Johannessen, J. C. Jeffery and M. D. Ward, New J. Chem.,
2006, 30, 26–28; (f) S. D. Reid, C. Wilson, C. I. De Matteis and
J. B. Love, Eur. J. Inorg. Chem., 2007, 5286–5293; (g) X.-X. Zhou,
Y.-P. Cai, S.-Z. Zhu, Q.-G. Zhan, M.-S. Liu, Z.-Y. Zhou and
L. Chen, Cryst. Growth Des., 2008, 8, 2076–2079; (h) Y. Pang,
S. Cui, B. Li, J. Zhang, Y. Wang and H. Zhang, Inorg. Chem.,
2008, 47, 10317–10324.
1 (a) J. M. Lehn, Supramolecular Chemistry: Concepts
and Perspectives, VCH, Weinheim, 1995; (b) E. C. Constable, in
Comprehensive Supramolecular Chemistry, ed. J. P. Sauvage and
M. W. Hosseini, Pergamon Press, Oxford, 1996, vol. 9, p. 213;
(c) G. F. Swiegers and T. J. Maleftse, Chem. Rev., 2000, 100,
3483–3538; (d) E. C. Constable, C. E. Housecroft, M. Neuburger,
D. Phillips, P. R. Raithby, E. Schofield, E. Sparr, D. A. Tocher,
M. Zehnder and Y. Zimmermann, J. Chem. Soc., Dalton Trans.,
2000, 2219–2228.
2 (a) O. Mamula and A. Von Zelewsky, Coord. Chem. Rev., 2003, 242,
87–95; (b) G. Seeber, B. E. F. Tiedemann and K. N. Raymond, Top.
Curr. Chem., 2006, 265, 147–183; (c) C. He, Y. Zhao, D. Guo and
C. L. Duan, Eur. J. Inorg. Chem., 2007, 3451–3463; (d) S. J. Lee and
W. Lin, Acc. Chem. Res., 2008, 41, 521–537.
3 (a) L. J. Childs, N. W. Alcock and M. J. Hannon, Angew. Chem.,
Int. Ed., 2001, 40, 1079–1081; (b) L. J. Childs, N. W. Alcock and
M. J. Hannon, Angew. Chem., Int. Ed., 2002, 41, 4244–4247;
(c) A. Lavalette, F. Tuna, G. Clarkson, N. W. Alcock and
M. J. Hannon, Chem. Commun., 2003, 2666–2667; (d) F. Tuna,
M. R. Lees, G. Clarkson and M. J. Hannon, Chem.–Eur. J., 2004,
10, 5737–5750; (e) H. Fenton, I. S. Tidmarsh and M. D. Ward,
Dalton Trans., 2010, 39, 3805–3815; (f) M. Albrecht, M. Fiege,
15 (a) E. Pardo, D. Cangussu, M. C. Dul, R. Lescouezec, P. Herson,
¨
Y. Journaux, E. F. Pedroso, C. L. M. Pereira, M. C. Munoz, R. Ruı
Garcıa, J. Cano, P. Amoros, M. Julve and F. Lloret, Angew. Chem.,
Int. Ed., 2008, 47, 4211–4216; (b) M. C. Dul, E. Pardo, R. Lescouezec,
´
z-
´
´
¨
L.-M. Chamoreau, F. Villain, Y. Journaux, R. Ruı
M. Julve, F. Lloret, J. Pasan and C. Ruiz-Perez, J. Am. Chem. Soc.,
z-Garcıa, J. Cano,
´ ´
´
´
2009, 131, 14614–14615; (c) Z. Zhang and D. Dolphin, Chem.
Commun., 2009, 6931–6933.
16 (a) E. C. Constable, M. Neuburger, L. A. Whall and M. Zehnder,
New J. Chem., 1998, 22, 219–220; (b) W.-W. Sun, A.-L. Cheng,
Q. X. Jia and E. Q. Gao, Inorg. Chem., 2007, 46, 5471–5473.
17 (a) L. H. Uppadine and J.-M. Lehn, Angew. Chem., Int. Ed., 2004,
43, 240–243; (b) A.-Mi. Stadler, N. Kyritsakas, R. Graff and
P. Kogerler, M. Speldrich, R. Frohlich and M. Engeser, Chem.–Eur.
¨
J., 2010, 16, 8797–8804.
¨
4 E. Breuning, U. Ziener, J.-M. Lehn, E. Wegelius and K. Rissanen,
Eur. J. Inorg. Chem., 2001, 1515–1521.
J.-M.
Lehn,
Chem.–Eur.
J.,
2006,
12,
4503–4522;
5 (a) C. Piguet, G. Bernardinelli and G. Hopfgartner, Chem. Rev.,
1997, 97, 2005–2062; (b) M. Albrecht, Chem. Rev., 2001, 101,
3457–3498; (c) M. J. Hannon and L. J. Childs, Supramol. Chem.,
2004, 16, 7–22.
(c) A. R. Stefankiewicz, G. Rogez, J. Harrowfield, M. Drillon
and J.-M. Lehn, Dalton Trans., 2009, 5787–5802.
18 M. Ruben, J. Rojo, F. J. Romero-Salguero, L. H. Uppadine and
J.-M. Lehn, Angew. Chem., Int. Ed., 2004, 43, 3644–3662.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 9633–9635 9635