The Journal of Physical Chemistry A
ARTICLE
dithranol used as a matrix. Computational calculations were
performed by DFT B3LYP/3-21G* methods with the GAUSS-
IAN 03 software package27on high-speed PCs.
D. M.; Torres, T. Chem. Rev. 2010, 110, 6768–6816. (c) Guldi, D. M.;
Rahman, G. M. A.; Sgobba, V.; Ehli, C. Chem. Soc. Rev. 2006, 35,
471–487. (d) Fukuzumi, S.; Guldi, D. M. In Electron Transfer in
Chemistry; Balzani, V., Ed.; Wiley-VCH: New York, 2001; Vol. 2, pp
270À337.
Laser Flash Photolysis. The studied compounds were excited
by a Panther OPO pumped by a Nd:YAG laser (Continuum,
SLII-10, 4À6 ns fwhm) with a power of 1.5 and 3.0 mJ per pulse.
Transient absorption measurements were performed using a
continuous xenon lamp (150 W) and an InGaAs-PIN photo-
diode (Hamamatsu 2949) as a probe light and a detector,
respectively. The output from the photodiodes and a photo-
multiplier tube was recorded with a digitizing oscilloscope
(Tektronix, TDS3032, 300 MHz). Femtosecond transient ab-
sorption spectroscopy experiments were conducted using an
ultrafast source, Integra-C (Quantronix Corp.), an optical para-
metric amplifier, TOPAS (Light Conversion Ltd.), and a com-
mercially available optical detection system, Helios provided by
Ultrafast Systems LLC. The source for the pump and probe
pulses were derived from the fundamental output of Integra-C
(780 nm, 2 mJ/pulse and fwhm =130 fs) at a repetition rate of
1 kHz. Seventy five percent of the fundamental output of the
laser was introduced into TOPAS, which has optical frequency
mixers resulting in tunable range from 285 to 1660 nm, while the
rest of the output was used for white light generation. Typically,
2500 excitation pulses were averaged for 5 s to obtain the
transient spectrum at a set delay time. Kinetic traces at appro-
priate wavelengths were assembled from the time-resolved spec-
tral data. All measurements were conducted at 298 K. Transient
spectra were recorded using fresh solutions in each laser excitation.
(4) Satake, A.; Kobuke, Y. Org. Biomol. Chem. 2007, 5, 1679–1691.
(5) (a) Sessler, J. L.; Lawrence, C. M.; Jayawickramarajah, J. Chem.
Soc. Rev. 2007, 36, 314–325. (b) D’Souza, F.; Ito, O. Coord. Chem. Rev.
2005, 249, 1410–1422. (c) D’Souza, F.; Ito, O. Chem. Commun.
2009, 4913–4928. (d) El-Khouly, M. E.; Ito, O.; Smith, P. M.; D’Souza,
F. J. Photochem. Photobiol. C 2004, 5, 79–104.
(6) (a) Fukuzumi, S. Org. Biomol. Chem. 2003, 1, 609–620. (b)
Fukuzumi, S. Bull. Chem. Soc. Jpn. 2006, 79, 177–195. (c) Fukuzumi, S.
Phys. Chem. Chem. Phys. 2008, 10, 2283–2297. (d) Fukuzumi, S.;
Kojima, T. J. Mater. Chem. 2008, 18, 1427–1439. (e) Fukuzumi, S.;
Honda, T.; Ohkubo, K.; Kojima, T. Dalton Trans. 2009, 3880–3889.
(7) Treibs, A.; Kreuzer, F. H. Liebigs Ann. Chem. 1968, 718, 208–223.
(8) Haugland, R. P. Handbook of Fluorescent Probes and Research
Chemicals, 6th ed.; Molecular Probes: Eugene, OR, 1996.
(9) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891–4932.
(10) (a) Kennedy, D. P.; Kormos, C. M.; Burdette, S. J. Am. Chem.
Soc. 2009, 131, 8578–8586. (b) Rosenthal, J.; Lippard, S. J. Am. Chem.
Soc. 2010, 132, 5536–5537.
(11) (a) Lee, Y. C.; Hupp, J. T. Langmuir 2010, 26, 3760–3765.
(b) Godoy, J.; Vives, G.; Tour, J. M. Org. Lett. 2010, 12, 1464–1467.
(12) Nierth, A.; Kobitski, A. Y.; Nienhaus, G. U.; J€aschke, A. J. Am.
Chem. Soc. 2010, 132, 2646–2654.
(13) Karolin, J.; Johansson, L. B.-A.; Strandberg, L.; Ny, T. J. Am.
Chem. Soc. 1994, 116, 7801–7806.
(14) (a) Imahori, H.; Norieda, H.; Yamada, H.; Nishimura, Y.;
Yamazaki, I.; Sakata, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123,
100–110. (b) Hattori, S.; Ohkubo, K.; Urano, Y.; Sunahara, H.; Tetsuo
Nagano, T.; Wada, Y.; Tkachenko, N. V.; Lemmetyinen, H.; Fukuzumi,
S. J. Phys. Chem. B 2005, 109, 15368–15375.
(15) (a) Whited, M. T.; Djurovich, P. I.; Roberts, S. T.; Durrell,
A. C.; Schlenker, C. W.; Bradforth, S. E.; Thompson, M. E. J. Am. Chem.
Soc. 2011, 133, 88–96. (b) Lazarides, T.; McCormick, T. M.; Wilson,
K. C.; Lee, S.; McCamant, D. W.; Eisenberg, R. J. Am. Chem. Soc. 2011,
133, 350–364. (c) Allik, T. H.; Hermes, R. E.; Sathyamoorthi, G.; Boyer,
J. H. Proc. SPIE-Int. Soc. Opt. Eng. 1994, 2115, 240–248.
(16) (a) D’Souza, F.; Smith, P. M.; Zandler, M. E.; McCarty, A. L.;
Itou, M.; Araki, Y.; Ito, O. J. Am. Chem. Soc. 2004, 126, 7898–7907.
(b) Wijesinghe, C. A.; El-Khouly, M. E.; Blakemore, J. D.; Zandler, M. E.;
Fukuzumi, S.; D’Souza, F. Chem. Commun. 2010, 46, 3301–3303.
(c) Wijesinghe, C. A.; El-Khouly; Subbaiyan, N. K.; Supur, M.; Zandler,
M. E.; Ohkubo, K.; Fukuzumi, S.; D’Souza, F. Chem.—Eur. J. 2011,
17, 3147–3156.
(17) (a) Liu, J.-Y.; El-Khouly, M. E.; Fukuzumi, S.; Ng, D. K. P.
Chem. Asian J. 2011, 6, 174–179. (b) Liu, J.-Y.; El-Khouly, M. E.;
Fukuzumi, S.; Ng, D. K. P. Chem.—Eur. J. 2011, 17, 1605–1613.
(18) (a) Gorman, A.; Killoran, J.; O’Shea, C.; Kenna, T.; Gallagher,
W. M.; O’Shea, D. F. J. Am. Chem. Soc. 2004, 126, 10619–10631.
(b) Hall, M. J.; McDonnell, S. O.; Killoran, J.; O’Shea, D. F. J. Org. Chem.
2005, 70, 5571–5578.
’ ASSOCIATED CONTENT
S
Supporting Information. MALDIi-mass spectra of the
b
investigated compounds, transient absorption spectrum of ADP
in benzonitrile, and absorption spectra of ADP•À. This material is
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: Francis.DSouza@UNT.edu (F.D.); Fukuzumi@chem.
eng.osaka.u.ac.jp (S.F.).
’ ACKNOWLEDGMENT
This work was supported by the National Science Foundation
(Grant No. 0804015 to F.D.), Flossie West Foundation, a
Grant-in-Aid (Nos. 20108010 and 21750146), and the Global
COE (center of excellence) program “Global Education and
Research Center for Bio-Environmental Chemistry” of Osaka
University from Ministry of Education, Culture, Sports, Science
and Technology, Japan, KOSEF/MEST through WCU project
(R31-2008-000-10010-0) from Korea.
(19) (a) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891–4932.
(b) Li, F.; Yang, S. I.; Ciringh, T.; Seth, J.; Martin, C. H.; Singh, D. L.;
Kim, D.; Birge, R. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Am.
Chem. Soc. 1998, 120, 10001–10017. (c) Tasior, M.; O’Shea, D. F.
Bioconjugate Chem. 2010, 21, 1130–1133.
’ REFERENCES
(20) (a) Palma, A.; Tasior, M.; Frimannsson, D. O.; Vu, T. T.;
Meallet-Renault, R.; O’Shea, D. F. Org. Lett. 2009, 11, 3638–3641. (b)
Murtagh, J.; Frimannsson, D. O.; O’Shea, D. F. Org. Lett. 2009, 11, 5386–
5389.
(21) McDonnell, S. O.; Hall, M. J.; Allen, L. T.; Byrne, A.; Gallagher,
W. M.; O’Shea, D. F. J. Am. Chem. Soc. 2005, 127, 16360–16361.
(22) Flavin, K.; Lawrence, K.; Bartelmess, J.; Tasior, M.; Navio, C.;
Bittencourt, C.; O’Shea, D. F.; Guldi, D. M.; Giordani, S. ACS Nano
2011, 5, 1198–1206.
(1) (a) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2009,
42, 1890–1898. (b) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res.
2001, 34, 40–48.(c) Gust, D.; Moore, T. A. In The Porphyrin Handbook;
Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego,
CA, 2000; Vol. 8, pp 153À190.
(2) (a) Wasielewski, M. R. Acc. Chem. Res. 2009, 42, 1910–1921.
(b) Wasielewski, M. R. Chem. Rev. 1992, 92, 435–461.
(3) (a) de la Torre, G.; Vazquez, P.; Agullo-Lopez, F.; Torres, T.
Chem. Rev. 2004, 104, 3723–3750. (b) Bottari, G.; de la Torre, G.; Guldi,
9818
dx.doi.org/10.1021/jp205236n |J. Phys. Chem. A 2011, 115, 9810–9819