CH4 uptake by NOTT-119a was measured at 298 K and at
pressures of up to 80 bar using the same sorption apparatus as
used for the H2 uptake experiments. While NOTT-119a shows
a respectable excess CH4 uptake of 154 mg gꢁ1 at 35 bar
(Fig. 3), this is lower than 186.1 mg gꢁ1 reported for the
isostructural PCN-689 (also known as NOTT-116) under the
same conditions. Due to its low crystallographic density,
NOTT-119a has an excess volumetric CH4 uptake (v/v) of
77.7 cm3 (STP) cmꢁ3 at 35 bar. The excess adsorption reꢁa3ches
saturation with an uptake of 194 mg gꢁ1 (97.8 cm3 cm ) at
66 bar, and the total uptake was calculated to be 327 mg gꢁ1
(165 cm3 cmꢁ3) at 80 bar. These values for gravimetric CH4
uptake in the high pressure region are comparable to other high
methane-storage MOFs such as MIL-1012b (excess 239 mg gꢁ1
at 80 bar), DUT-9-SCD17 (excess 219 mg gꢁ1 at 100 bar)
and DUT-61c/MOF-20516 (excess 230 mg gꢁ1 at 100 bar; total
394 mg gꢁ1 at 80 bar).
3 (a) B. Wang, A. P. Cote, H. Furukawa, M. O’Keeffe and
´
O. M. Yaghi, Nature, 2008, 453, 207–212; (b) A. R. Millward
and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998–17999.
4 (a) L. Ma, C. Abney and W. Lin, Chem. Soc. Rev., 2009, 38,
1248–1256; (b) L. La and W. Lin, Topics in Current Chemistry, ed.
M. Schroder, Springer Verlag, Germany, 2010, vol. 293, p. 175–205.
¨
5 Q.-R. Fang, G.-S. Zhu, Z. Jin, Y.-Y. Ji, J.-W. Ye, M. Xue,
H. Yang, Y. Wang and S.-L. Qiu, Angew. Chem., Int. Ed., 2007,
46, 6638–6642.
6 K. M. L. Taylor-Pashow, J. D. Rocca, Z. Xie, S. Tran and W. Lin,
J. Am. Chem. Soc., 2009, 131, 14261–14263.
7 X. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. Brown, J. Simmons,
M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays,
P. Hubberstey, N. R. Champness and M. Schroder, J. Am. Chem.
¨
Soc., 2009, 131, 2159–2171.
8 (a) S. Yang, S. K. Callear, A. J. Ramirez-Cuesta, W. I. F. David,
J. Sun, A. J. Blake, N. R. Champness and M. Schroder, Faraday
¨
Discussions, 2011, DOI: 10.1039/c1fd00006c; (b) A. J. Blake,
N. R. Champness, S. S. M. Chung, W.-S. Li and M. Schroder,
¨
Chem. Commun., 1997, 1005–1007.
9 D. Yuan, D. Zhao, D. Sun and H.-C. Zhou, Angew. Chem., Int. Ed.,
2010, 49, 5357–5361.
10 Y. Yan, X. Lin, S. Yang, A. J. Blake, A. Dailly, N. R. Champness,
In summary, the (3,24)-connected mesoporous framework
NOTT-119 has been synthesised by utilising a nanosized
C3-symmetric hexacarboxylate linker. NOTT-119 shows high
thermal stability due to the ubt-type network architecture,
exhibits a high BET surface area of 4118(200) m2 gꢁ1 and a
remarkably large total pore volume of 2.35 cm3 gꢁ1. Desolvated
NOTT-119a shows interesting Ar sorption behaviour with large
desorption hysteresis, consistent with the unique polyhedral
structure incorporating different sized cages, in addition to high
H2 and CH4 adsorption capacities in the high pressure region.
We thank the EPSRC, the U.K. Sustainable Hydrogen
University of Nottingham for funding. We are grateful to
Diamond Light Source for access to Beamline I19 and I11. MS
gratefully acknowledges receipt of an ERC Advanced Grant.
NRC gratefully acknowledges the receipt of a Royal Society
Leverhulme Trust Senior Research Fellowship. SY thanks
Shell-EPSRC for a DHPA Scholarship and the University of
Nottingham/EPSRC for a PhD+ Fellowship.
P. Hubberstey and M. Schroder, Chem. Commun., 2009, 1025–1027.
11 Y. Yan, I. Telepeni, S. Yang, X. Lin, W. Kockelmann, A. Dailly,
A. J. Blake, W. Lewis, G. S. Walker, D. R. Allan, S. A. Barnett,
¨
N. R. Champness and M. Schroder, J. Am. Chem. Soc., 2010, 132,
4092–4094.
¨
12 (a) S. Hong, M. Oh, M. Park, J. W. Yoon, J.-S. Chang and
M. S. Lah, Chem. Commun., 2009, 5397–5399; (b) D. Zhao,
D. Q. Yuan, D. F. Sun and H.-C. Zhou, J. Am. Chem. Soc.,
2009, 131, 9186–9188; (c) B. Zheng, J. Bai, J. Duan, L. Wojtas and
M. J. Zaworotko, J. Am. Chem. Soc., 2011, 133, 748–751;
¨
(d) O. K. Farha, A. O. Yazaydin, I. Eryazici, C. D. Malliakas,
B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and
J. T. Hupp, Nat. Chem., 2010, 2, 944–948; (e) G. K. H. Shimizu,
Nat. Chem., 2010, 2, 909–911; (f) F. Nouar, J. F. Eubank,
T. Bousquet, L. Wojtas, M. J. Zaworotko and M. Eddaoudi,
J. Am. Chem. Soc., 2008, 130, 1833–1835.
13 O. Delgado-Friedrichs, M. D. Foster, M. O’Keeffe,
D. M. Proserpio, M. M. J. Treacy and O. M. Yaghi, J. Solid State
Chem., 2005, 178, 2533–2554.
14 A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65,
148–155.
15 (a) K. Koh, A. G. Wong-Foy and A. J. Matzger, Angew. Chem., Int.
Ed., 2008, 47, 677–680; (b) A. Sonnauer, F. Hoffmann, M. Froba,
¨
´
L. Kienle, V. Duppel, M. Thommes, C. Serre, G. Ferey and
N. Stock, Angew. Chem., Int. Ed., 2009, 48, 3791–3794;
(c) Y. K. Park, S. B. Choi, H. Kim, K. Kim, B. H. Won,
K. Choi, J. S. Choi, W. S. Ahn, N. Won, S. Kim, D. H. Jung,
S. H. Choi, G. H. Kim, S. S. Cha, Y. H. Jhon, J. K. Yang and
J. Kim, Angew. Chem., Int. Ed., 2007, 46, 8230–8233;
(d) W. Zhuang, S. Ma, X.-S. Wang, D. Yuan, J.-R. Li, D. Zhao
and H.-C. Zhou, Chem. Commun., 2010, 46, 5223–5225.
Notes and references
1 (a) H. Furukawa, M. Miller and O. M. Yaghi, J. Mater. Chem.,
2007, 17, 3197–3204; (b) K. Koh, A. G. Wong Foy and
A. J. Matzger, J. Am. Chem. Soc., 2009, 131, 4184–4185;
(c) N. Klein, I. Senkovska, K. Gedrich, U. Stoeck, A. Henschel,
U. Mueller and S. Kaskel, Angew. Chem., Int. Ed., 2009, 48,
9954–9957; (d) G. Fe
F. Millange, J. Dutour, S. Surble
2005, 309, 2040–2042; (e) M. Latroche, S. Surble
C. Mellot-Draznieks, P. L. Llewellyn, J.-H. Lee, J.-S. Chang,
S. H. Jhung and G. Ferey, Angew. Chem., Int. Ed., 2006, 45,
8227–8231.
´
rey, C. Mellot-Draznieks, C. Serre,
and I. Margiolaki, Science,
, C. Serre,
16 H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi,
A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim and
O. M. Yaghi, Science, 2010, 329, 424–428.
17 K. Gedrich, I. Senkovska, N. Klein, U. Stoeck, A. Henschel,
M. R. Lohe, I. A. Baburin, U. Mueller and S. Kaskel, Angew.
Chem., Int. Ed., 2010, 49, 8489–8492.
´
´
´
2 (a) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter,
M. O’Keeffe and O. M. Yaghi, Science, 2002, 295, 469–472;
(b) P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont,
M. Daturi, L. Hamon, G. De Weireld, J.-S. Chang, D.-Y. Hong,
18 J. R. Holst and A. I. Cooper, Adv. Mater., 2010, 22, 5212–5216.
19 D. Yuan, D. Zhao, D. J. Timmons and H.-C. Zhou, Chem. Sci.,
2011, 2, 103–106.
20 (a) H. Chun, D. N. Dybtsev, H. Kim and K. Kim, Chem.–Eur. J.,
2005, 11, 3521–3529; (b) X. Lin, J. Jia, X. B. Zhao, K. M. Thomas,
A. J. Blake, N. R. Champness, P. Hubberstey and M. Schroder,
¨
Y. K. Hwang, S. H. Jhung and G. Ferey, Langmuir, 2008, 24,
´
7245–7250; (c) X. Lin, J. Jia, P. Hubberstey, M. Schroder and
¨
N. R. Champness, CrystEngComm, 2007, 9, 438–448;
(d) L. J. Murray, M. Dinca and J. R. Long, Chem. Soc. Rev.,
2009, 38, 1294–1314; (e) X. Lin, N. R. Champness and
Angew. Chem., Int. Ed., 2006, 45, 7358–7364; (c) J. Luo, H. Xu,
Y. Liu, Y. Zhao, L. L. Daemen, C. Brown, T. V. Timofeeva, S. Ma
and H-C. Zhou, J. Am. Chem. Soc., 2008, 130, 9626–9627;
(d) W. Yang, X. Lin, J. Jia, A. J. Blake, C. Wilson, P. Hubberstey,
M. Schroder, in Topics in Current Chemistry, ed. M. Schroder,
¨
Springer Verlag, Germany, 2010, vol. 293, p. 35–76.
¨
N. R. Champness and M. Schroder, Chem. Commun., 2008, 359–361.
¨
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 9995–9997 9997