Rutjes et al. demonstrated that laccase can be used as a
catalyst for the oxidative removal of the p-methoxyphenyl
protective group on amines under aerobic conditions, in
place of the conventional stoichiometric reaction with ceric
ammonium nitrate.8 If an air oxidation mediated by lac-
case can be combined with an organocatalytic reaction,
this will provide a new green chemical transformation.
In the absence of an amine catalyst, the aldehyde was
simply converted to carboxylic acid 3 in acetate buffer
(entry 1). This type of TEMPO-mediated air oxidation of
aldehydes by laccase has been reported,14,15 and such a
reaction is supposed to be brought about by the oxoam-
monium ion which is generated by means of laccase-
catalyzed one-electron oxidation of TEMPO.16 When the
catalytic amount of pyrrolidine was added to the reaction,
R-oxyaminated carboxylic acid 5 was formed along with
carboxylic acid 3 (entry 2). The product 5 was considered
to be generated by the further oxidation of R-oxyaminated
aldehyde 4. While acidic conditions are optimal in many
laccase-catalyzed reactions,7 in the present case, the
R-oxyamination occurred smoothly in neutral water as
well asin acetate buffer (entry 3). The reaction rate was low
in the presence of THF or DMF (entries 4 and 5). The
Figure 1. Resin-supported peptide catalyst.
To realize such a reaction in a single flask, the organo-
catalyst should be active in water, since water is generally a
suitable solvent for enzymatic reactions.9 Meanwhile, our
group has developed resin-supported peptide catalyst 1
(Figure 1)10 for asymmetric organocatalytic reactions in
aqueous media.11 For example, this catalyst is quite effec-
tive for the chiral-amine-catalyzed asymmetric R-oxyami-
nation of aldehydes in the presence of either Fe(II) or Cu(I)
cocatalyst.12,13 Because of the high efficiency of the peptide
catalyst in water and the versatile applicability of the
laccase oxidation, we envisaged that the peptide-catalyzed
R-oxyamination could proceed through the laccase-
mediated air oxidation without using a metal reagent.
Herein, we report the novel system for the asymmetric
R-oxyamination of aldehydescatalyzed by resin-supported
peptide 1 and laccase in water.
(7) For reviews, see: (a) Witayakran, S.; Ragauskas, A. J. Adv. Synth.
Catal. 2009, 351, 1187. (b) Hollmann, F.; Arends, I. W. C. E.; Buehler,
K. ChemCatChem 2010, 2, 762.
(8) Verkade, J. M. M.; van Hemert, L. J. C.; Quaedflieg, P. J. L. M.;
€
Schoemaker, H. E.; Schurmann, M.; van Delft, F. L.; Rutjes, F. P. J. T.
Adv. Synth. Catal. 2007, 349, 1332.
€
(9) Groger et al. reported the sequential reaction using an organo-
catalyst and alcohol dehydrogenase for the synthesis of chiral 1,3-diols.
€
Baer, K.; Krauβer, M.; Burda, E.; Hummel, W.; Berkessel, A.; Groger,
H. Angew. Chem., Int. Ed. 2009, 48, 9355.
(10) The peptide possesses a polyleucine chain synthesized with
N-carboxyanhydride monomer, and the number of -(Leu)n- means
weight-average degree of polymerization.
(11) (a) Akagawa, K.; Akabane, H.; Sakamoto, S.; Kudo, K. Org.
Lett. 2008, 10, 2035. (b) Akagawa, K.; Akabane, H.; Sakamoto, S.;
Kudo, K. Tetrahedron: Asymmetry 2009, 20, 461. (c) Akagawa, K.;
Yamashita, T.; Sakamoto, S.; Kudo, K. Tetrahedron Lett. 2009, 50,
5602. (d) Akagawa, K.; Kudo, K. Adv. Synth. Catal. 2011, 353, 843.
(12) (a) Akagawa, K.; Fujiwara, T.; Sakamoto, S.; Kudo, K. Org.
Lett. 2010, 12, 1804. (b) Akagawa, K.; Fujiwara, T.; Sakamoto, S.;
Kudo, K. Chem. Commun. 2010, 46, 8040.
Initially, oxidation of 3-phenylpropanal with TEMPO/
laccase under various conditions was examined (Table 1).
(13) For recent selected examples of peptide-based asymmetric cat-
alysts, see: (a) Fowler, B. S.; Mikochik, P. J.; Miller, S. J. J. Am. Chem.
Soc.2010, 132, 2870. (b) Wiesner, M.; Upert, G.; Angelici, G.; Wennemers,
H. J. Am. Chem. Soc. 2010, 132, 6. (c) Gustafson, J. L.; Lim, D.; Miller, S. J.
Science 2010, 328, 1251. (d) Cowen, B. J.; Saunders, L. B.; Miller, S. J.
J. Am. Chem. Soc. 2009, 131, 6105. (e) Wu, F.-C.; Da, C.-S.; Du, Z. X.;
Guo, Q.-P.; Li, W.-P.; Yi, L.; Jia, Y.-N.; Ma, X. J. Org. Chem. 2009, 74,
4812. (f) Fiori, K. W.; Puchlopek, A. L. A.; Miller, S. J. Nat. Chem. 2009, 1,
Table 1. R-Oxyamination of 3-Phenylpropanal with Amine
Catalyst and Laccase
€
630. (g) Muller, C. E.; Wanka, L.; Jewell, K.; Schreiner, P. R. Angew.
Chem., Int. Ed. 2008, 47, 6180. (h) Lewis, C. A.; Gustafson, J. L.; Chiu, A.;
Balsells, J.; Pollard, D.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller,
S. J. J. Am. Chem. Soc. 2008, 130, 16358. (i) Wiesner, M.; Revell, J. D.;
Tonazzi, S.; Wennemers, H. J. Am. Chem. Soc. 2008, 130, 5610. (j) D’Elia,
V.; Zwicknagl, H.; Reiser, O. J. Org. Chem. 2008, 73, 3262. (k) Peris, G.;
Jakobsche, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 8710.
(14) This system has been used for oxidizing alcohols to aldehydes.
(a) Fabbrini, M.; Galli, C.; Gentili, P.; Macchitella, D. Tetrahedron Lett.
2001, 42, 7551. (b) d’Acunzo, F.; Baiocco, P.; Fabbrini, M.; Galli, C.;
Gentili, P. Eur. J. Org. Chem. 2002, 4195. (c) Arends, I. W. C. E.; Li, Y.-
X.; Ausan, R.; Sheldon, R. A. Tetrahedron 2006, 62, 6659. (d) Tromp,
ꢀ
_
S. A.; Matijosyte, I.; Sheldon, R. A.; Arends, I. W. C. E.; Mul, G.;
Kreutzer, M. T.; Moulijn, J. A.; de Vries, S. ChemCatChem 2010, 2, 827.
ꢀ
_
(e) Tropm, S. A.; Matijosyte, I.; Sheldon, R. A.; Arends, I. W. C. E.;
Mul, G.; Kreutzer, M. T.; Moulijn, J. A.; de Vries, S. ChemCatChem
2010, 2, 827.
(15) For examples for overoxidation of aldehydes to carboxylicacids,
see: (a) Marzorati, M.; Danieli, B.; Haltrich, D.; Riva, S. Green Chem.
2005, 7, 310. (b) Baratto, L.; Candido, A.; Marzorati, M.; Sagui, F.;
Riva, S.; Danieli, B. J. Mol. Catal. B: Enzym. 2006, 39, 3. (c) Monti, D.;
ꢀ
Candido, A.; Silva, M. M. C.; Kren, V.; Riva, S.; Danieli, B. Adv. Synth.
Catal. 2005, 347, 1168. (d) Viikari, L.; Niku-Paavola, M.-L.; Buchert, J.;
Forssell, P.; Teleman, A.; Kruus, K. WO Patent 99/23240, 1999. (e)
Jetten, J. M.; van den Dool, R. T. M.; van Hartingsveldt, W.; Besemer, A. C.
WO Patent 00/50463, 2000.
(16) (a) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem.
1987, 52, 2559. (b) de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H.
Synthesis 1996, 1153.
a Determined after being reduced to the corresponding alcohol by a
boraneÀTHF complex (BH3•THF). b n.d. = Not determined. c Isolated
yield of 5 was 46%.
Org. Lett., Vol. 13, No. 13, 2011
3499