J. T. Fletcher, J. E. Reilly / Tetrahedron Letters 52 (2011) 5512–5515
5515
Table 1 (continued)
Entry
Diazonium salt
Alkyne
Condition
ID
Structure
Yield (%)
N
O
O
N
N
O
O
Si
-X+N2
N2+X-
14
d
7C
61
N
N
N
N
N
N
Reaction conditions: (a) 1.0 mmol diazonium salt, 1.2 mmol sodium azide, 1.2 mmol alkyne, 0.2 mmol CuSO4, 0.4 mmol sodium ascorbate, 5 mL t-BuOH, 5 mL H2O, 24 h, room
temperature; (b) identical to a with addition of 1.2 mmol K2CO3; (c) identical to a except with 0.5 mmol diazonium salt; (d) identical to b except with 0.5 mmol dizonium salt.
3. Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51–68.
4. Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952–3015.
5. Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44,
Table 2
Isolated yields of azide reactants prepared from diazonium salts
5188–5240.
NaN3
6. Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E. Org. Lett. 2004, 6,
4223–4225.
7. Kacprzak, K. Synlett 2005, 943–946.
8. Sreedhar, B.; Reddy, P. S. Synth. Commun. 2007, 37, 805–812.
9. Odlo, K.; Hoydahl, E. A.; Hansen, T. V. Tetrahedron Lett. 2007, 48, 2097–2099.
10. Beckmann, H. S. G.; Wittmann, V. Org. Lett. 2007, 9, 1–4.
11. Barral, K.; Moorhouse, A. D.; Moses, J. E. Org. Lett. 2007, 9, 1809–1811.
12. Smith, N. M.; Greaves, M. J.; Jewell, R.; Perry, M. W. D.; Stocks, M. J.;
Stonehouse, J. P. Synlett 2009, 1391–1394.
R
N3
R
N2+X-
(1-7)
H2O
room temperature
24 h
(1-7)D
Azide derivative
Isolated yield (%)
1D
2D
3D
4D
5D
6D
7D
89
90
89
90
91
81
88
13. Tao, C. Z.; Cui, X.; Li, J.; Liu, A. X.; Liu, L.; Guo, Q. X. Tetrahedron Lett. 2007, 48,
3525–3529.
14. Sharghi, H.; Beyzavi, M. H.; Safavi, A.; Doroodmand, M. M.; Khalifeh, R. Adv.
Synth. Catal. 2009, 351, 2391–2410.
15. Yadav, J. S.; Reddy, B. V. S.; Reddy, G. M.; Chary, D. N. Tetrahedron Lett. 2007, 48,
8773–8776.
16. Yadav, J. S.; Reddy, B. V. S.; Reddy, G. M.; Anjum, S. R. Tetrahedron Lett. 2009, 50,
6029–6031.
17. Feldman, A. K.; Colasson, B.; Fokin, V. V. Org. Lett. 2004, 6, 3897–3899.
18. Zhao, Y.-B.; Yan, Z.-Y.; Liang, Y.-M. Tetrahedron Lett. 2006, 47, 1545–1549.
19. Kolarovic, A.; Schnurch, M.; Mihovilovic, M. D. J. Org. Chem. 2011, 76, 2613–
2618.
20. Thibault, R. J.; Takizawa, K.; Lowenheilm, P.; Helms, B.; Mynar, J. L.; Frechet, J.
M. J.; Hawker, C. J. J. Am. Chem. Soc. 2006, 128, 12084–12085.
21. Aucagne, V.; Leigh, D. A. Org. Lett. 2006, 8, 4505–4507.
22. Fletcher, J. T.; Bumgarner, B. J.; Engels, N. D.; Skoglund, D. A. Organometallics
2008, 27, 5430–5433.
Acknowledgments
This publication was made possible by Grant No. P20 RR16469
from the National Center for Research Resources (NCRR), a compo-
nent of the National Institutes of Health (NIH) and its contents are
the sole responsibility of the authors and do not necessarily repre-
sent the official views of NCRR or NIH.
23. Fletcher, J. T.; Walz, S. E.; Keeney, M. E. Tetrahedron Lett. 2008, 49, 7030–7032.
24. Hunger, K. Industrial Dyes: Chemistry, Properties, Applications; Wiley-VCH:
Weinheim, 2003.
Supplementary data
25. Woodward, R. B. Org. Synth. 1955, Coll. Vol. 3, 453–455.
26. Wu, Z. Y.; Glaser, R. J. Am. Chem. Soc. 2004, 126, 10632–10639.
27. Fletcher, J. T.; Keeney, M. E.; Walz, S. E. Synthesis 2010, 3339–3345.
28. General procedure: To a 20 mL scintillation vial was added (in order) CuSO4,
sodium ascorbate, diazonium salt, water, tert-butanol, and alkyne reactant
(amounts as noted in Table 1). Lastly, sodium azide was added with stirring,
resulting in a rapid evolution of gas from the vial over approximately 10 min.
After the majority of gas evolution had subsided, the vial was loosely sealed
with a screw cap and continued to stir rapidly at room temperature. After 24 h
the reaction was extracted between methylene chloride and 5% aqueous
ammonium hydroxide solution, and the aqueous layer was washed a second
time with methylene chloride. The combined organic layers were dried over
magnesium sulfate and the solution isolated via gravity filtration through
fluted filter paper into a round bottom flask. Volatiles were removed via rotary
evaporation to give the final 1,2,3-triazole product.
Experimental procedures and characterization including copies
of 1H NMR and MS spectra for all reported azide and triazole prod-
ucts are available. Supplementary data associated with this article
References and notes
1. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596.
2. Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064.