Complex C2. Obtained as an orange powder in 78% yield. FT-
IR (KBr disk, cm-1): 2973, 2919, 1653, 1621, 1565, 1531, 1481,
1444, 1421, 1200, 1144, 1028, 860, 786, 775, 665. Anal. Calcd. For
C38H36Cl2Co2N2O8 (837.47): C, 54.50; H, 4.33; N, 3.34. Found: C,
54.09; H, 4.51; N, 3.21.
Complex C3. Obtained as an orange powder in 67% yield. FT-IR
(KBr disk, cm-1): 2965, 2924, 2865, 1647, 1618, 1600, 1588, 1572,
1533, 1465, 1409, 1360, 1334, 1229, 1178, 1049, 997, 876, 829, 802,
775, 717, 662. Anal. Calcd. For C46H54Co2N2O8 (880.80): C, 62.73;
H, 6.18; N, 3.18. Found: C, 62.45; H, 6.24; N, 3.03.
reaction was carried out by vigorous stirring of the reaction
mixture at the various temperature. After the polymerization, the
resulting solution was poured into a large amount of acidified
ethanol (5% v/v solution of HCl) containing 2,6-di-tert-butyl-
4-methylphenol as a stabilizer. The precipitated polymers were
filtered, washed with ethanol and dried under vacuum at 50 ◦C
overnight.
Acknowledgements
Complex C4. Obtained as an orange powder in 75% yield. FT-
IR (KBr disk, cm-1): 2974, 2952, 2917, 1645, 1620, 1599, 1567,
1536, 1483, 1454, 1410, 1203, 1145, 1051, 998, 852, 777, 712, 664.
Anal. Calcd. For C40H42Co2N2O8 (796.64): 60.31; H, 5.31; N, 3.52.
Found: C, 59.93; H, 5.58; N, 3.17.
This work was supported by the National Natural Science Founda-
tion of China (Grant No. 21006085) and the State Key Laboratory
of Chemical Engineering (Grant No. SKL-ChE-11D03).
Complex C5. Obtained as an orange powder in 75% yield. FT-
IR (KBr disk, cm-1): 2963, 2866, 1649, 1618, 1585, 1572, 1532,
1440, 1415, 1362, 1335, 1238, 1222, 1177, 1042, 1020, 839, 776,
665. Anal. Calcd. For C52H66Co2N2O8 (964.96): C, 64.72; H, 6.89;
N, 2.90. Found: C, 64.57; H, 6.93; N, 2.84.
Complex C6. Obtained as a reddish orange powder in 77% yield.
FT-IR (KBr disk, cm-1): 2956, 2918, 2868, 1646, 1618, 1594, 1571,
1530, 1480, 1452, 1411, 1361, 1244, 1223, 1199, 1146, 1045, 1019,
852, 781, 715, 664. Anal. Calcd. For C46H54Co2N2O8 (880.80): C,
62.73; H, 6.18; N, 3.18. Found: C, 62.56; H, 6.23; N, 3.20.
Notes and references
1 (a) L. Porri and A. Giamsso, In Conjugated diene polymerization in
Comprehensive Polymer Science, Vol. 4, Part II (ed.: G. C. Eastmond,
A. Ledwith, S. Russo and B. Sigwalt), Pergamon, Oxford, 1989, pp. 53–
108; (b) L. Porri, A. Giarrusso and G. Ricci, Prog. Polym. Sci., 1991,
16, 405–441; (c) R. Taube and G. Sylvester, In Applied Homogeneous
Catalysis with Organometallic Complexes, (ed.: B. Cornils and W. A.
Herrmann) Wiley-VCH: Weinheim, Germany, 2002, pp 285–315; (d) S.
K.-H. Thiele and D. R. Wilson, J. Macromol. Sci. Part C: Polym. Rev.,
2003, C43, 581–628.
2 G. J. Van Amerongen, Adv. Chem., 1966, 52, 136–152.
3 W. Cooper, Ind. Eng. Chem. Prod. Res. Dev., 1970, 9, 457–466.
4 (a) J. Furukawa, Pure Appl. Chem., 1975, 42, 495–508; (b) J. Furukawa,
Acc. Chem. Res., 1980, 13, 1–6.
X-ray crystallography for complex C2
5 A. Oehme, U. Gebauer, K. Gehrke and M. D. Lechner, Angew.
Makromol. Chem., 1996, 235, 121–130.
Single-crystal X-ray diffraction studies for complex C2 were
carried out on a Rigaku RAXIS Rapid IP diffractometer with
6 (a) K. Endo and N. Hatakeyama, J. Polym. Sci., Part A: Polym. Chem.,
2001, 39, 2793–2798; (b) D. C. D. Nath, T. Shiono and T. Ikeda,
Macromol. Chem. Phys., 2002, 203, 756–760; (c) D. C. D. Nath, T.
Shiono and T. Ikeda, Appl. Catal., A, 2003, 238, 193–199; (d) G. Kwag,
C. Bae and S. Kim, J. Appl. Polym. Sci., 2009, 113, 2186–2190; (e) Z.
Cai, M. Shinzawa, Y. Nakayama and T. Shiono, Macromolecules, 2009,
42, 7642–7643.
7 (a) G. Leone, A. Boglia, F. Bertini, M. Canetti and G. Ricci, J. Polym.
Sci., Part A: Polym. Chem., 2010, 48, 4473–4483; (b) G. Ricci, A.
Sommazzi, F. Masi, M. Ricci, A. Boglia and G. Leone, Coord. Chem.
Rev., 2010, 254, 661–676 and references therein.
8 A. Proto and C. Capacchione, in: L. S. Baugh and J. A. M. Canich,
(ed.), (Stereoselective Polymerization with Single-site Catalysts, Taylor
and Francis, New York, 2008, pp. 447–473.
9 (a) B. L. Small, M. Brookhart and A. M. A. Bennet, J. Am. Chem.
Soc., 1998, 120, 4049–4050; (b) G. J. P. Britovsek, V. C. Gibson, B. S.
Kimberley, P. J. Maddox, S. J. McTavish, G. A. Solan, A. J. P. White
and D. J. Williams, Chem. Commun., 1998, 849–850.
10 (a) C. Bianchini, G. Giambastiani, I. G. Rios, G. Mantovani, A. Meli
and A. M. Segarra, Coord. Chem. Rev., 2006, 250, 1391–1418 and
references therein; (b) V. C. Gibson, C. Redshaw and G. A. Solan, Chem.
Rev., 2007, 107, 1745–1776 and references therein; (c) C. Bianchini, G.
Giambastiani, L. Luconi and A. Meli, Coord. Chem. Rev., 2010, 254,
431–455 and references therein.
11 (a) K. Endo, T. Kitagawa and K. Nakatani, J. Polym. Sci., Part A:
Polym. Chem., 2006, 44, 4088–4094; (b) D. Chandran, C. H. Kwak, C.
S. Ha and I. Kim, Catal. Today, 2008, 131, 505–512.
˚
graphite monochromated Mo-Ka radiation (l = 0.71073 A). Cell
parameters were obtained by global refinement of the positions of
all collected reflections. Intensities were corrected for Lorentz and
polarization effects and empirical absorption. The structures were
solved by direct methods and refined by full-matrix least-squares
on F2. All non-hydrogen atoms were refined anisotropically. All
hydrogen atoms were placed in calculated positions. Structure
solution and refinement were performed by using the SHELXL-97
Package.28
Crystal data for C2. C38H36Cl2Co2N2O8, Mw = 837.45 g mol-1,
T = 293(2)K, tetragonal crystal system, space group I4(1)/a,
˚
˚
˚
a = 23.979(3) A, b = 23.979(3) A, c = 13.130(2) A, a = b =
◦
3
-3
˚
g = 90 , V = 7549.8(16) A , Z = 8, Dc = 1.474 Mg m , m =
1.074 mm-1, F(000) = 3440, crystal size = 0.04 ¥ 0.04 ¥ 0.02 mm3,
15500 reflections collected, 3330 unique which were used in all
calculations. Empirical absorption correction made, Tmin and Tmax
0.9586 and 0.9790 respectively. GOF = 0.908, Final R indices [I >
2s(I)] R1 = 0.0616, wR2 = 0.1342, R indices (all data) R1 = 0.2046,
-3
˚
wR2 = 0.1857. Largest diff. peak and hole 0.350 and -0.509 e A .
12 (a) K. B. Ung, J. S. Kim, K. J. Lee, C. S. Ha and I. Kim, Stud. Surf.
Sci. Catal., 2006, 159, 873–876; (b) D. Gong, B. Wang, C. Bai, J. Bi, F.
Wang, W. Dong, X. Zhang and L. Jiang, Polymer, 2009, 50, 6259–6264;
(c) D. Gong, B. Wang, H. Cai, X. Zhang and L. Jiang, J. Organomet.
Chem., 2011, 696, 1584–1590.
13 (a) V. Appukuttan, L. Zhang, C. S. Ha and I. Kim, Polymer, 2009, 50,
1150–1158; (b) R. Cariou, J. Chirinos, V. C. Gibson, G. Jacobsen, A. K.
Tomov and M. R. J. Elsegood, Macromolecules, 2009, 42, 1443–1444;
(c) R. Cariou, J. J. Chirinos, V. C. Gibson, G. Jacobsen, A. K. Tomov, G.
J. P. Britovsek and A. J. P. White, Dalton Trans., 2010, 39, 9039–9045.
14 V. Appukuttan, L. Zhang, J. Y. Ha, D. Chandran, B. K. Bahuleyan,
C.-S. Ha and I. Kim, J. Mol. Catal. A: Chem., 2010, 325, 84–90.
Polymerization of 1,3-butadiene
Solution polymerizations of 1,3-butadiene in toluene were carried
out in a sealed glass reactor (100 mL) with a rubber septum and a
connection to a vacuum system. The reactor was charged with the
desired amounts of precatalyst and cocatalyst solutions, followed
by the addition of PPh3 when required. The mixture was stirred
for 2 min at the desired temperature and followed by the addition
of a solution of 1,3-butadiene in toluene. The polymerization
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 10975–10982 | 10981
©