Table 2 Comparison of the synthesis of N-(9-fluorenylmethoxy-carbonyl)aniline with reported methods
Entry
Solvent and conditions
70 ◦C, Toluene18
Time (h)
Isolated yield (%)
E-factor
Mass intensity
1
2
3
4
5
5
24
1
7
2
78
68
94
90
90
14.34
527.54
0.5
14.2
5.05
16.81
666.00
4.6
150.56
6.35
19
RT, CH2Cl2
RT, Benzene or reflux, phenyl isocyanate17
23 ◦C, pyridine, and THF20
No catalyst, 60 ◦C, H2O
RT – room temperature
if nonpolar segments of the reactants are brought together in the
transition states.4 A slower reaction for the phenylethylamine
substrates (entries r and s) can be explained due to unfavourable
interactions that destabilize the transition state (5). To under-
stand the efficiency of our protocol with respect to others for the
synthesis of N-(9-fluorenylmethoxycarbonyl) aniline, the results
are collected and depicted in Table 2. The results clearly indicates
that the catalyst-free Fmoc protection of aniline in aqueous
media reported here is the most efficient, clean and green process
(Table 2, entry 5). The method reported by Carpino and Han17
(Table 2, entry 3) also shows a comparable yield and also related
E-factor and mass intensity for N-(9-fluorenylmethoxycarbonyl)
aniline but the main drawback of this method is related to the
use of benzene as solvent or phenyl isocyanate under reflux
conditions. For specific reaction conditions see corresponding
literature and ESI† for calculation.
Fmoc-amino acids. Enantiomeric purity was obtained by HPLC analysis
(see ESI†).
1 (a) Green Chemistry: Frontiers in Chemical Synthesis and Processes,
Oxford University Press, Oxford, 1998; (b) M. Lancaster, Green
Chemistry: An Introductory Text, Royal Society of Chemistry,
Cambridge, 2002; (c) J. Clark and D. Macquarrie, Handbook of
Green Chemistry and Technology, Blackwell, Abingdon, 2002; (d) R.
A. Sheldon, Industrial Environmental Chemistry, Plenum, New York,
1992.
2 (a) A. Solhy, A. Elmakssoudi, R. Tahir, M. Karkouri, M. Larzek,
M. Bousmina and M. Zahouily, Green Chem., 2010, 12, 2261; (b) S.
Otto and J. Engberts, J. Am. Chem. Soc., 1999, 121, 6798; (c) S.
Kobayashi and K. Manabe, Acc. Chem. Res., 2002, 35, 209; (d) S.
Shimizu, S. Shirakawa, Y. Sasaki and C. Hirai, Angew. Chem., Int.
Ed., 2000, 39, 1256; (e) C. J. Li and C. M. Wei, Chem. Commun.,
2002, 268; (f) A. Solhy, A. Smahi, H. El Badaoui, B. Elaabar, A.
Amoukal, A. Tikad, S. Sebti and D. J. Macquarrie, Tetrahedron Lett.,
2003, 44, 4031; (g) F. Bazi, H. El Badaoui, S. Tamani, S. Sokori, A.
Solhy, D. J. Macquarrie and S. Sebti, Appl. Catal., A, 2006, 301, 211;
(h) A. K. Chakraborti, S. Rudrawar, K. B. Jadhav, G. Kaur and S.
V. C h a n ke s h wa r a , Green Chem., 2007, 9, 1335; (i) G. L. Khatik, R.
Kumar and A. K. Chakraborti, Org. Lett., 2006, 8, 2432.
3 S. V. Chankeshwara and A. K. Chakraborti, Org. Lett., 2006, 8, 3259.
4 R. Breslow, Acc. Chem. Res., 1991, 24, 159.
5 K. Manabe, S. Iimura, X. M. Sun and S. Kobayashi, J. Am. Chem.
Soc., 2002, 124, 11971.
6 T. W. Greene and P. G. M. Wuts, Protective Groups in Organic
Synthesis, John Wiley & Sons, USA, 1991.
7 (a) F. Albericio, Biopolymers, 2000, 55, 123; (b) L. A. Carpino, H.
G. Chao, M. Beyermann and M. Bienert, J. Org. Chem., 1991, 56,
2635; (c) L. A. Carpino, Acc. Chem. Res., 1987, 20, 401; (d) G. W.
Anderson and A. C. McGregor, J. Am. Chem. Soc., 1957, 79, 6180.
8 (a) P. Rovero, L. Quartara and G. Fabbri, Int. J. Pept. Protein Res.,
1991, 37, 140; (b) I. Azuse, M. Tamura, K. Kinomura, H. Okai, K.
Kouge, F. Hamatsu and T. Koizumi, Bull. Chem. Soc. Jpn., 1989, 62,
3103.
Conclusions
In conclusion, a very simple methodology for the catalyst-
free Fmoc protection of amines is reported. The method
is highly efficient and environmentally benign owing to the
mild conditions, high yields, excellent chemoselectivity, ease of
product isolation and purification which fulfil the criterion for a
green chemistry practice. This methodology can be applicable for
the protection of amino acids, a crucial step in solution and/or
solid phase synthesis as well as in the synthesis of important
drug intermediates.
9 Y. Wu and J. C. Xu, Tetrahedron, 2001, 57, 8107.
10 I. Bouillon, R. Vanderesse, N. Brosse, O. Fabre and B. Jamart-
Gregoire, Tetrahedron, 2007, 63, 9635.
11 R. H. Bahekar, P. A. Jadav, D. N. Patel, V. M. Prajapati, A. A.
Gupta, M. R. Jain and P. R. Patel, Tetrahedron Lett., 2007, 48,
5003.
Acknowledgements
Manoj B. Gawande thanks FCT for the award of postdoctoral
grant SFRH/BPD/64934/2009 and financial assistance.
12 P. Tundo, P. Anastas, D. S. Black, J. Breen, T. Collins, S. Memoli, J.
Miyamoto, M. Polyakoff and W. Tumas, Pure Appl. Chem., 2000, 72,
1207.
Notes and references
‡ General procedure for the Fmoc protection of amines: To Fmoc chloride
(1.2 mmol) was added the amine (1 mmol) and water 1.5 mL and the
reaction mixture stirred at 60 ◦C. The reaction was monitored by thin
layer chromatography using ethyl acetate and hexane as eluent (3 : 7).
After consumption of the amine the reaction product was filtered,
washed with water and recrystallized from hot ethanol to afford the
pure product.
General procedure for the Fmoc protection of amino acids To the mixture
of the two solids the amino acid (1 mmol) and Fmoc chloride (1.2 mmol)
it was added 1.5 mL of water:ethanol (3 : 1). The reaction mixture
was stirred at 60 ◦C for particular time. After completion of reaction
monitored by TLC the solution was acidified with HCl (1 M) untill
pH 4–5 at O ◦C and extracted with EtOAc (3 X10 mL). The combined
organic layers were dried (Na2SO4) and evaporated affording the pure
13 (a) V. Perron, S. Abbott, N. Moreau, D. Lee, C. Penney and B.
Zacharie, Synthesis, 2009, 283; (b) A. R. Katritzky, N. E. Abo-
Dya, A. Abdelmajeid, S. R. Tala, M. S. Amine and S. A. El-Feky,
Org. Biomol. Chem., 2011, 9, 596; (c) K. G. Dendrinos and A. G.
Kalivretenos, J. Chem. Soc.-Perkin Trans. 1, 1998, 1463; (d) C. Helgen
and C. G. Bochet, J. Org. Chem., 2003, 68, 2483; (e) R. Chinchilla,
D. J. Dodsworth, C. Najera and J. M. Soriano, Bioorg. Med. Chem.
Lett., 2002, 12, 1817; (f) J. M. Dener, P. P. Fantauzzi, T. A. Kshirsagar,
D. E. Kelly and A. B. Wolfe, Org. Process Res. Dev., 2001, 5, 445;
(g) R. Chinchilla, D. J. Dodsworth, C. Najera and J. M. Soriano,
Tetrahedron Lett., 2001, 42, 7579; (h) B. H. Hu and P. B. Messersmith,
Tetrahedron Lett., 2000, 41, 5795.
14 (a) P. S. Branco, V. P. Raje, J. Dourado and J. Gordo, Org. Biomol.
Chem., 2010, 8, 2968; (b) M. B. Gawande, V. Polshettiwar, R. S.
3358 | Green Chem., 2011, 13, 3355–3359
This journal is
The Royal Society of Chemistry 2011
©