Please do not adjust margins
Page 5 of 6
ChemComm
COMMUNICATION
Journal Name
100
90
80
70
60
50
40
30
20
10
DOI: 10.1039/C9CC09826G
Dekkers and E. W. Meijer, J. Am. Chem. Soc., 1997, 119, 9909-9910; (b) M.
240 °C
Oda, H. G. Nothofer, G. Lieser, U. Scherf, S. C. J. Meskers and D. Neher, Adv.
Mater., 2000, 12, 362-365; (c) S. H. Chen, D. Katsis, A. W. Schmid, J. C.
Mastrangelo, T. Tsutsui and T. N. Blanton, Nature 1999, 397, 506-508; (d) H. Z.
Zheng, W. R. Li, W. Li, X. Wang, Z. Tang, S. X. Zhang and Y Xu, Adv. Mater., 2018,
30, 1705948.
(04)
(33)
(01)
(001)
(10)
(32)
(12)
2 (a) H. Isla, M. Srebro-Hooper, M. Jean, N. Vanthuyne, T. Roisnel, J. L. Lunkley, G.
Muller, J. A. G. Williams, J. Autschbach and J. Crassous, Chem. Commun., 2016,
52, 5932-5935; (b) K. Nakabayashi, T. Amako, N. Tajima, M. Fujiki and Y. Imai,
Chem. Commun., 2014, 50, 13228-13230; (c) T. Hamamoto and M. Funahashi, J.
Mater. Chem. C, 2015, 3, 6891-6900.
(21)
5
10
15
20
25
30
35
40
45
Scattering angles (2θ)
Figure 6. The XRD trace of DCB-2Ch in mesophase at 240 °C and the
proposed molecular stacking in rectangular columnar mesophase.
3 (a) J. Liu, H. Su, L. Meng, Y. Zhao, C. Deng, P. Lu, J. W. Y. Lam, X. Huang, H. Wu,
K. S. Wong and B. Z. Tang, Chem. Sci., 2012, 3, 2737-2747; (b) J. L. Han, P. F.
Duan, X. G. Li and M. H. Liu, J. Am. Chem. Soc., 2017, 139, 9783-9786.
As for CDB-2Ch, it showed a blue-shift up to 32 nm for
fluorescence emission at 240 °C, implying thermochrochromism and
the transformation of different phase (Figure S36). The DSC curve 4 (a) H. Tsumatori, T. Nakashima and T. Kawai, Org. Lett., 2010, 12, 2362-2365;
showed a small endothermic peak at about 233 °C in the 2nd heating
(b) J. Roose, B. Z. Tang and K. S. Wong, Small, 2016, 12, 6495-6512.
corresponding to this transition. The clearing point couldn’t be 5 (a) X. H. Gao, X. J. Qin, X. F. Yang, Y. G. Li and P. F. Duan, Chem. Commun., 2019,
observed before it decomposed. A birefringent mesomorphic phase
appeared at 240 °C but it was not typical Col mesophase (Figure S34,
1500 nm for the film thickness in Figure S44). Nevertheless, the
Bragg reflection in XRD pattern could be indexed with a rectangular
55, 5914-5917; (b) D. Y. Zhao, X. H. He, X. G. Gu, L. Guo, K. S. Wong, J. W. Y.
Lam and B. Z. Tang, Adv. Optical. Mater., 2016, 4, 534-539; (c) X. F. Yang, J. L.
Han, Y. F. Wang and P. F. Duan, Chem. Sci., 2019, 10, 172-178; (d) B. A. S. Jose,
S. Matsushita and K. Akagi, J. Am. Chem. Soc., 2012, 134, 19795-19807.
lattice defined by two orthogonal vector a (38.3 Å) and b (20.8 Å) 6 J. Kumar, T. Nakashima, H. Tsumatori and T. Kawai, J. Phys. Chem. Lett., 2014,
(Figure 6 and Table S1). The low correlated core-core interaction (h 5, 316-321.
= 4.99 Å ) suggested H-bond directed columnar assembly with a 7 F. Y. Song, Y. H. Cheng, Q. M. Liu, Z. J. Qiu, J. W. Y. Lam, L. B. Lin, F. F. Yang and
wider interplane distance while disk-shaped aromatics tended to be B. Z. Tang, Mater. Chem. Front., 2019, 3, 1768-1778.
closely packing. There was a pair of CDB-2Ch molecules arranged 8 (a) M. Mitani, S. Ogata, S. Yamane, M. Yoshio, M. Hasegawab and T. Kato, J.
side-by-side in each column stratum based on lattice parameters of
XRD results. Amazingly, by compared with the silent response under
mechanical force, dramatically high glum of +5.6 x 10-2 (Figure 3, S40
and Figure S45) was observed at Colr phase, which was the result of
the intracolumnar helical arrangement driven by thermodynamic
Mater. Chem. C, 2016, 4, 2752-2760; (b) J. W. Chung, Y. You, H. S. Huh, B. K.
An, S. J. Yoon, S. H. Kim, S. W. Lee and S. Y. Park, J. Am. Chem. Soc., 2009, 131,
8163-8172; (c) J. Zhao, Z. Chi, Y. Zhang, Z. Mao, Z. Y. Yang, E. Ubba and Z. G.
Chi, J. Mater. Chem. C, 2018, 6, 6327-6353; (d) Y. Sagara, T. Mutai, I. Yoshikawa
and K. Araki, J. Am. Chem. Soc., 2007, 129, 1520-1521.
transformation. This value was high among CPL organic molecules 9 (a) Y. Sagara and T. Kato, Nat. Chem., 2009, 1, 605-610; (b) J. Zhao, Z. H. Chi, Z.
(10-4-10-2 usually).15 Furthermore, due to the reduced π-π overlap,
the emission of Colr phase showed blue shift with green
luminescene. The B3LYP density functional theory suggested the
Y. Yang, Z. Mao, Y. Zhang, E. Ubba and Z. G. Chi, Mater. Chem. Front., 2018, 00,
1-3; (c) Z. G. Chi, X. Q. Zhang, B. G. Xu, X. Zhou, C. P. Ma, Y. Zhang, S. W. Liu and
J. R. Xu, Chem. Soc. Rev., 2012, 41, 3878-3896.
similar orbital distribution and HOMO-LUMO energy levels for CDB- 10 (a) S. Jiang, J. Qiu, L. Lin, H. Guo and F. Yang, Dyes Pigm., 2019, 163, 363-370;
1Ch and CDB-2Ch (Figure S43), implying their similar electronic
(b) Q. Ye, D. Zhu, H. Zhang, X. Lu and Q. Lu. J. Mater. Chem. C, 2015, 3, 6997-
state for single molecule. The modulation of emission was caused
7003; (c) D. Yang, P. Duan, L. Zhang and M. Liu, Nat. Commun., 2017, 8, 15727.
by their different molecular packing mode. Hence, it could be 11(a) Y. Sagara, T. Mutai, I. Yoshikawa and K. Araki, J. Am. Chem. Soc., 2007, 129,
deduced that both CDB-1Ch and CDB-2Ch possessed the
thermochrochromism and thermo-induced CPL with high glum values
based on various molecular assemblies of different H-bonds.
In conclusion, this paper prepared two cyanodistyrylbenzene-
cholesterol liquid crystal with asymmetrical or symmetrical H-
1520-1521; (b) M. J. Teng, X. R. Jia, X. F. Chen and Y. Wei, Angew. Chem., 2012,
124, 6504 -6507; (c) Z. Y. Ma, M. G. Teng, Z. J. Wang, S. Yang and X. R. Jia,
Angew. Chem., 2013, 125, 12494 -12498; (d) W. Yuan, X. K. Ren, M. W. Li, H. S.
Guo, Y. Han, M. J. Wu, Q. Wang, M. M. Li and Y. L. Chen, Angew. Chem. Int. Ed.,
2018, 57, 6161-6165.
bonding structures. CDB-1Ch with asymmetrical structure displayed 12J. Kunzelman, M. Kinami, B. R. Crenshaw, J. D. Protasiewicz and C. Weder, Adv.
not only mechanochromism and thermochrochromism but also Mater., 2008, 20, 119-122.
mechanic-induced and thermo-induced CPL properties based on the 13(a) T. Wöhrle, I. Wurzbach, J. Kirres, A. Kostidou, N. Kapernaum, J.
sensitive mechanic and thermal response of molecular assemblies
directed by H-bond. This phenomenon was observed for the first
time, opening an new strategy for design and synthesis of new CPL
materials with multi-response abilities for external stimuli.
Litterscheidt, J. C. Haenle, P. Staffeld, A. Baro, F. Giesselmann and S. Laschat,
Chem. Rev., 2016, 116, 1139-1241; (b) R. K. Gupta, S. K. Pathak, J. De, S. K. Pal
and A. S. Achalkumar, J. Mater. Chem. C, 2018, 6, 1844-1852.
14M. Lehmann, C. Köhn, H. Meier, S. Renker and A. Oehlhof, J. Mater. Chem.,
2006, 16, 441-451.
This work was financially supported by XXXXXXXXXXX.
15(a) F. Song, Z. Zhao, Z. Liu, J. W. Y. Lam and B. Z. Tang, J. Mater. Chem. C, 2020,
8, 3284-3301; (b) M. Li, W. B. Lin, L. Fang and C. F. Chen, Acta Chim. Sinica,
2017, 75, 1150-116.
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins