6626
J. Ke˛dzia et al. / Tetrahedron Letters 52 (2011) 6623–6626
3
CDCl3) d 14.24 (d, JC–P = 7.1 Hz, 2 Â CH3CH2O); 41.29 (br s, CH3N); 46.08 (br s,
under reduced pressure. The residue was purified by column chromatography
on silica gel (CHCl3/MeOH, 100:1), to give 13a (2.23 g, 93%), as a yellow solid;
mp = 116–118 °C. 31P NMR (63 MHz, CDCl3) d 17.29. 1H NMR (250 MHz, CDCl3)
d 1.21–2.20 (m, 10H, 5 Â CH2); 1.36 (t, 6H, 3JH–H = 7.1 Hz, 2 Â CH3CH2O); 4.11–
2
1
CH3N); 59.71 (d, JC–P = 5.7 Hz, 2 Â CH2O); 91.89 (d, JC–P = 193.7 Hz, CP);
124.26 (s, CHAr); 127.48 (s, CHAr); 129.07 (s, CHAr); 130.54 (s, CC(O)); 133.57 (s,
2
2
CCl); 137.67 (s, CCl); 159.92 (d, JC–P = 16.9 Hz, CHCP); 186.46 (d, JC–P
=
12.2 Hz, C(O)). IR: 1056, 1244, 1636, 3070 cmÀ1. Anal. calcd for C15H20Cl2NO4P:
C, 47.39; H, 5.30; N, 3.68. Found: C, 47.63; H, 5.21; N, 4.01.
4.35 (m, 5H, 2 Â CH2O, CH); 7.39 (dd, 1H, JH–H = 8.6 Hz, JH–H = 1.7 Hz, CHAr);
3
4
4
7.53 (d, 1H, JH–H = 1.7 Hz, CHAr); 8.42 (d, 1H, 3JH–H = 8.6 Hz, CHAr); 8.45 (d, 1H,
3
18. Bentrude, W. G. W.N. Setzer. In Methods in Stereochemical Analysis, Vol. 8:
Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G., Quin,
L. D., Eds.; VCH Publishers Inc.: Deerfield Beach, Florida, 1987; pp 365–385.
19. Melnikov, N. N.; Kozlov, V. A.; Churusova, S. G.; Buvashkina, N. I.; Ivanchenko,
V. I.; Negrebetskii, W. W.; Grapov, A. F. Zh. Obsch. Khim. 1983, 53, 1689–1693.
Chem. Abstr. 1984, 100, 34616..
3JH–P = 13.8 Hz, CHCP). 13C NMR (101 MHz, CDCl3) d 14.59 (d, JC–P = 6.6 Hz,
2 Â CH3CH2O); 23.32 (s, CH2); 24.00 (s, 2 Â CH2); 30.71 (s, 2 Â CH2); 57.86 (s,
2
1
CH); 60.82 (d, JC–P = 5.8 Hz, 2xCH2O); 106.64 (d, JC–P = 193.6 Hz, CP); 113.19
3
(s, CHAr); 123.51 (s, CHAr); 124.52 (d, JC–P = 10.7 Hz, CC(O)); 127.57 (s, CHAr);
137.57 (s, CCl); 138.97 (s, CN); 144.90 (d, 2JC–P = 18.3 Hz, CHCP); 173.38 (d, 2JC–
P = 3.8 Hz, C(O)). IR: 1031, 1256, 1636, 3072 cmÀ1
.
Anal. calcd for
20. Typical procedure for the preparation of vinylphosphonates 12a–j: A solution of
11a (3.04 g, 8.0 mmol) and cyclohexylamine (0.79 g, 8.0 mmol) in a mixture of
EtOH and Et2O (2/1, 45 mL) was stirred at rt for 1 h. The solvent was removed
under reduced pressure. The residue was purified by column chromatography
on silica gel (EtOAc/hexane, 2:1), to give pure 12a (2.78 g, 80%), as a yellow
solid; mp = 124–126 °C. 31P NMR (63 MHz, CDCl3) d 22.02 (Z), 22.52 (E). 1H
NMR (300 MHz, CDCl3) d 1.16 (t, 6H,3JH–H = 7.0 Hz, 2 Â CH3CH2O, E); 1.33 (t,
6H,3JH–H = 7.0 Hz, 2 Â CH3CH2O, Z); 1.21–2.04 (m, 10H, 5 Â CH2, E, Z); 3.00–3.14
(m, 1H, CHNH, Z); 3.22–3.40 (m, 1H, CHNH, E); 3.79–4.00 (m, 4H, 2 Â CH2O, E);
4.04–4.20 (m, 4H, 2 Â CH2O, Z); 7.20–7.31 (m, 3H, CHAr, E, Z); 7.40–7.70 (m, 1H,
C19H25ClNO4P: C, 57.36; H, 6.33; N, 3.52. Found: C, 57.15; H, 6.56; N, 3.78.
22. Phosphonic diacids 20 were prepared according to the literature procedure:
McKenna, C. S.; Schidhauser, J. J. Chem. Soc., Chem. Commun. 1979, 739. For
example: product 14c was isolated as a brown solid, mp = 207–209 °C. 31P
NMR (63 MHz, CDCl3 + CF3COOH)
d
11.62. 1H NMR (250 MHz,
3
CDCl3 + CF3COOH) d 4.41 (s, 3H, CH3N); 7.88 (d, 1H, JH–H = 8.9 Hz, CHAr); 8.03
3
3
(s, 1H, CHAr); 8.55 (d, 1H, JH–H = 8.9 Hz, CHAr); 9.27 (d, 1H, JH–P = 10.8 Hz,
CHCP). 13C NMR (101 MHz, CDCl3 + CF3COOH) d 44.30 (s, CH3N); 106.29 (d, 1JC–
P = 190.3 Hz, CP); 117.55 (s, CHAr); 119.26 (d, 3JC–P = 10.8 Hz, CC(O)); 127.59 (s,
CHAr); 130.82 (s, CHAr); 141.02 (s, CCl); 145.18 (s, CN); 152.73 (d, 2JC–P = 15.5 Hz
3
3
2
CHCP, E); 7.95 (d, 1H, JH–H = 14.0 Hz, JH–P = 11.5 Hz, CHCP, Z); 9.42–9,55 (m,
1H, NH, Z); 11.00–11.15 (m, 1H, NH, E). 13C NMR (101 MHz, CDCl3) d 15.89 (d,
CHCP); 171.55 (d, JC–P = 4.6 Hz, C(O)). IR: 1040, 1127, 1612 cmÀ1. Anal. calcd
for C10H9ClNO4P: C, 43.90; H, 3.32; N, 5.12. Found: C, 43.74; H, 3.51; N, 4.89.
23. Phosphonic monoacids 15 were prepared according to the literature procedure:
Krawczyk, H. Synth. Commun. 1997, 27, 3151–3161. For example: product 15c
was isolated as a white solid, mp = 199-202 °C. 31P NMR (63 MHz, CDCl3) d
14.01. 1H NMR (250 MHz, CDCl3) d 1.28 (t, 3H, 3JH–H = 7.1 Hz, CH3CH2O); 4.00 (s,
3
3JC–P = 7.1 Hz, 2 Â CH3CH2O, E); 16.15 (d, JC–P = 6.7 Hz, 2 Â CH3CH2O, Z); 24.11
(s, CH2, Z); 24.28 (s, CH2, E); 24.87 (s, CH2, E, Z); 33.36 (s, CH2, Z); 33.46 (s, CH2,
E); 57.91 (s, CHNH, Z); 58.80 (s, CHNH, E); 61.30 (d, 2JC–P = 5.4 Hz, 2 Â CH2O, E);
2
1
62.28 (d, JC–P = 5.1 Hz, 2xCH2O, Z); 92.66 (d, JC–P = 206.8 Hz, CP, E); 92.97 (d,
1JC–P = 183.6 Hz, CP, Z); 125.66–139.21 (6 Â CAr, E, Z); 161.15 (d, JC–P = 19,0 Hz
3H, CH3N); 4.10 (dq, 2H, JH–H = 7.1; JH–P = 7.1, CH2O); 7.45 (dd, 1H, JH–
4 4
2
3
3
3
2
2
CHCP, E); 161.99 (d, JC–P = 10.0 Hz CHCP, Z); 189.49 (d, JC–P = 8.7 Hz, C(O), Z);
191.84 (d, 2JC–P = 15.8 Hz, C(O), E). IR: 1056, 1232, 1624, 3070 cmÀ1. Anal. calcd
for C19H26Cl2NO4P: C, 52.55; H, 6.03; N, 3.23. Found: C, 52.26; H, 6.29; N, 3.11.
21. Typical procedure for the preparation of 3-diethoxyphosphorylquinolin-4-ones
13a–f or 3-diethoxyphosphoryl-1,8-naphthyridin-4-ones 13g–j: NaH (0.22 g,
9.0 mmol) was added to a solution of 12a (2.60 g, 6.0 mmol) in dry toluene
(30 mL) at rt. The mixture was heated for 18 h at 110 °C. Next, H2O (10 mL) was
added and the aqueous layer was extracted with toluene (2 Â 10 mL). The
combined organic phases were dried over MgSO4 and the solvent removed
H = 8.7 Hz, JH–H = 1.6 Hz, CHAr); 7.53 (d, 1H, JH–H = 1.6 Hz, CHAr); 8.28 (d, 1H,
3JH–H = 8.7 Hz, CHAr); 8.63 (d, 1H, JH–P = 12.2 Hz, CHCP). 13C NMR (101 MHz,
3
3
2
CDCl3) d 16.33 (d, JC–P = 6.9 Hz, CH3CH2O); 41.74 (s, CH3N); 62.09 (d, JC–
1
P = 5.7 Hz, CH2O); 109.19 (d, JC–P = 181.0 Hz, CP); 116.10 (s, CHAr); 123.47 (d,
3JC–P = 10.7 Hz, CC(O)); 126.42 (s, CHAr); 128.25 (s, CHAr); 140.00 (s, CCl); 140.94
2
2
(s, CN); 150.90 (d, JC–P = 16.1 Hz CHCP); 176.22 (d, JC–P = 5.1 Hz, C(O)). IR:
1043, 1590, 1621 cmÀ1. Anal. calcd for C12H13ClNO4P: C, 47.78; H, 4.34; N, 4.64.
Found: C, 47.52; H, 4.29; N, 4.43.