1766
D. Tomco et al. / Journal of Inorganic Biochemistry 105 (2011) 1759–1766
inhibition. Surprisingly, the kinetically inert 3 showed remarkable
proteasome inhibition, far superior to that observed for the labile 1.
We hypothesize that this difference is due to the fact that cobalt is
redox-active and species 3 is likely to be reduced intracellularly. In
this process a labile cobalt(II) species would be generated, favoring li-
gand dissociation and interaction with the proteasome. We also hy-
Appendix A. Supplementary data
Supplementary data to this article can be found online at doi:10.
1016/j.jinorgbio.2011.09.013.
References
pothesize that species 1, already containing
a labile cobalt(II)
species will not remain intact intracellularly in order to reach the tar-
geted proteasome. The possibility of using redox-active metals that
can be intracellularly bioreduced opens a stimulating window of op-
portunity to explore proteasome inhibition, both by metal activation
as demonstrated here and as suggested by Scarpellini [10] as well as
by using metal ions as carriers for drug delivery [12]. Such studies
are currently under investigation in our group.
[1] P. Kaiser, L. Huang, Genome Biology 6 (2005) 233.
[2] M. Hochstrasser, Current Opinion in Cell Biology 7 (1995) 215–223.
[3] S. Meiners, A. Ludwig, V. Stangl, K. Stangl, Medicinal Research Reviews 28 (2008)
309–327.
[4] L. Borissenko, M. Groll, Chemistry Review 107 (2007) 687–717.
[5] R. Shakya, F. Peng, J. Liu, M.J. Heeg, C.N. Verani, Inorganic Chemistry 45 (2006)
6263–6268.
[6] M. Frezza, C.N. Verani, D. Chen, Q.P. Dou, Letters in Drug Design and Discovery 4
(2007) 311–317.
[7] A.F. Kisselev, A.L. Goldberg, Chemical Biology 8 (2001) 739–758.
[8] S. Hindo, M. Frezza, D. Tomco, M.J. Heeg, L. Hryhorczuk, B.R. McGarvey, Q.P. Dou,
C.N. Verani, European Journal of Medicinal Chemistry 44 (2009) 4353–4361.
[9] M. Frezza, S.S. Hindo, D. Tomco, M. Allard, Q.C. Cui, M.J. Heeg, D. Chen, Q.P. Dou, C.N.
Verani, Inorganic Chemistry 48 (2009) 5928–5937.
[10] E.T. Souza, L.C. Castro, F.A.V. Castro, L. do Canto Visentin, C.B. Pinheiro, M.D. Pereira, S.
de Paula Machado, M. Scarpellini, Journal of Inorganic Biochemistry 103 (2009)
1355–1365.
Abbreviations
AMC
COSY
CT
7-amino-4-methylcoumarin
homonuclear correlation spectroscopy
chymotrypsin
DEPT
DMF
distortionless enhancement by polarization transfer
dimethylformamide
[11] L. Gurley, N. Beloukhina, K. Boudreau, A. Klegeris, W.S. McNeil, Journal of Inorgan-
ic Biochemistry 105 (2011) 858–866.
ESI-MS electron spray ionization mass spectrometry
[12] M.D. Hall, T.W. Failes, N. Yamamoto, T.W. Hambley, Dalton Transactions (2007)
3983–3990.
[13] C. Schieber, J. Howitt, U. Putz, J.M. White, C.L. Parish, P.S. Donnelly, S.-S. Tan, Jour-
nal of Biological Chemistry 286 (2011) 8555–8564.
[14] APEX II collection and processing programs are distributed by the manufacturer,
Bruker AXS Inc, Madison WI, USA, 2009.
[15] G.M. Sheldrick, Acta Crystallograhica A64 (2008) 112–122.
[16] K.G. Daniel, P. Gupta, R.H. Harbach, W.C. Guida, Q.P. Dou, Biochemical Pharmacol-
ogy 67 (2004) 1139–1151.
FTIR
Fourier-transform infrared spectroscopy
2,4-diiodo-6-((pyridine-2-ylmethylamino)methyl)phenol
6,6′-((ethane-1,2-diylbis((pyridin-2-ylmethyl)azanediyl))
bis(methylene))bis(2,4-diiodophenol)
heteronuclear multiple quantum coherence
3(4,5dimethylthiazol-2-yl)2,5diphenyltetrazolium
bromide
nuclear Overhauser effect
1640 (Roswell Park Memorial Institute) cell culture
medium
HL1
H2L2
HMQC
MTT
[17] D. Chen, Q.C. Cui, H. Yang, Q.P. Dou, Cancer Research 66 (2006) 10425–10433.
[18] K.G. Daniel, D. Chen, S. Orlu, Q.C. Cui, F.R. Miller, Q.P. Dou, Breast Cancer Research
7 (2005) R897–R908.
NOE
RPMI
[19] R. Shakya, C. Imbert, H.P. Hratchian, M. Lanznaster, M.J. Heeg, B.R. McGarvey, M.M.
Allard, H.B. Schlegel, C.N. Verani, Dalton Transactions (2006) 2517–2525.
[20] C. Imbert, H.P. Hratchian, M. Lanznaster, M.J. Heeg, L.M. Hryhorczuk, B.R. McGarvey,
H.B. Schlegel, C.N. Verani, Inorganic Chemistry 44 (2005) 7414–7422.
[21] R. Shakya, S.S. Hindo, L. Wu, M. Allard, M.J. Heeg, H.P. Hratchian, B.R. McGarvey, S.
da Rocha, C.N. Verani, Inorganic Chemistry 46 (2007) 9808–9818.
[22] A. dos Anjos, A.J. Bortoluzzi, B. Szpoganicz, M.S.B. Caro, G.R. Friedermann, A.S.
Mangrich, A. Neves, Inorganica Chimica Acta 358 (2005) 3106–3114.
[23] E. Wong, S. Liu, S.J. Rettig, C. Orvig, Inorganic Chemistry 34 (1995) 3057–3064.
[24] A. Neves, S.M.D. Erthal, I. Vencato, A.S. Ceccato, Y.P. Mascarenhas, O.R. Nascimento,
M. Hörner, A.A. Batista, Inorganic Chemistry 31 (1992) 4749–4755.
[25] D.L. Kepert, Inorganic Stereochemistry, Springer-Verlag, New York, 1982, p. 114.
[26] I.A. Setyawati, S.J. Rettig, C. Orvig, Canadian Journal of Chemistry 77 (1999)
2033–2038.
SDSPAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
CDCl3
PARP
PC-3
NHE
deuterated chloroform
poly (ADP-ribose) polymerase
prostate cancer cell line
normal hydrogen electrode
TBAPF6 tetrabutylammonium hexafluorophosphate electrolite
Acknowledgments
[27] M. Lanznaster, A. Neves, A.J. Bortoluzzi, A.M.C. Assumpção, I. Vencato, S.P.
Machado, S.M. Drechsel, Inorganic Chemistry 45 (2006) 1005–1011.
[28] A. Neves, I. Vencato, S.M.D. Erthal, Inorganica Chimica Acta 262 (1997) 77–80.
[29] F. Silva, F. Marques, I.C. Santos, A. Paulo, A.S. Rodrigues, J. Rueff, I. Santos, Journal
of Inorganic Biochemistry 104 (2010) 523–532.
[30] D. Chen, M. Frezza, R. Shakya, C.Q. Cui, V. Milacic, C.N. Verani, Q.P. Dou, Cancer
Research 67 (2007) 9258–9265.
[31] B. An, R.H. Goldfarb, R. Siman, Q.P. Dou, Cell Death and Differentiation 5 (1998)
1062–1075.
The authors thankfully acknowledge support from the National
Science Foundation (Grants CHE-0718470 and CHE-1012413 for
C.N.V.), the Karmanos Cancer Institute Pilot Grant (KCI027354 for
C.N.V. and Q.P.D.), the Department of Defense Breast Cancer Research
Program (W81XWH-04-1-0688 and DAMD17-03-1-0175 for Q.P.D.)
and the National Cancer Institute (1R01CA120009 for Q.P.D.). D.T.
and S.S. respectively acknowledge graduate fellowships from the
WSU-College of Liberal Arts and Sciences and WSU-School of
Medicine.
[32] H. Østergaard, C. Tachibana, J.R. Winther, The Journal of Cell Biology 166 (2004)
337–345.