calix[4]arene that probably result in a large reduction of the
host–guest association.
better selectivities to Me-substituted guests and broader selectivities to
N-containing aromatic guests than 1Zn.
9 Complexation induced shifts of pyridine with ZnTPP were estimated
to be ꢀ6.1, ꢀ1.8 and ꢀ1.4 ppm for Ha, Hb and Hg, respectively.
10 Pyridine encapsulated by calix[4]arene experiences a upfield shift,
see: R. G. Chapman, G. Olovsson, J. Trotter and J. C. Sherman,
J. Am. Chem. Soc., 1998, 120, 6252–6260; N. P. Power,
S. J. Dalgarno and J. L. Atwood, New J. Chem., 2007, 31, 17–20.
11 Rate constants were calculated using the 2D EXSY program:
E. W. Abel, T. P. J. Coston, K. G. Orrell, V. Sik and
D. J. Stephenson, Magn. Reson., 1986, 70, 34–53. Change of
mixing time between 0.2 and 1.2 s did not influence considerably
the values of rate constants for pyridine.
In summary, axial ligands, such as pyridine and imidazole,
are known to bind to Zn(II)-porphyrins to give five-coordi-
nated complexes.16 In the case of capped porphyrins, axial
ligands can bind from either side of the porphyrin to give
positive association constants. Calix[4]arene-capped porphyrin
1Zn offers a guest-binding environment in its cavity to show
high guest selectivity. The guests that are shaped in a way that
is complementary to the confined cavity are capable of fitting
into and binding to the cavity by van der Waals attractive
interactions. This type of high shape selectivity is obviously
unusual in an artificial molecular host.
12 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta,
F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin,
V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi,
N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma,
V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg,
Notes and references
1 J.-M. Lehn, Supramolecular Chemistry. Concepts and Perspectives,
Wiley-VCH, Weinheim, 1995; P. D. Beer, P. A Gale and
D. K. Smith, Supramolecular Chemistry (Oxford Chemistry Primers,
74), Oxford University Press, 1999; J. W. Steed and J. L. Atwood,
Supramolecular Chemistry, Wiley, New York, 2000.
2 F. Cramer, W. Saenger and H.-Ch. Spatz, J. Am. Chem. Soc., 1967,
89, 14–20; W. L. Mock and N.-Y. Shih, J. Org. Chem., 1986, 51,
4440–4446; H. Imai, S. Nakagawa and E. Kyuno, J. Am. Chem. Soc.,
1992, 114, 6719–6723; T. Heinz, D. M. Rudkevich and J. Rebek,
Nature, 1998, 394, 764–766; T. Haino, M. Kobayashi, M. Chikaraishi
and Y. Fukazawa, Chem. Commun., 2005, 2321–2323.
¨
S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz,
J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.1, Gaussian,
Inc., Wallingford CT, 2009.
3 D. M. Rudkevich, W. Verboom and D. N. Reinhoudt, J. Org. Chem.,
1995, 60, 6585–6587; O. Middel, W. Verboom and D. N. Reinhoudt,
J. Org. Chem., 2001, 66, 3998–4005; J. Nakazawa, J. Hagiwara,
M. Mizuki, Y. Shimazaki, F. Tani and Y. Naruta, Angew. Chem., Int.
Ed., 2005, 44, 3744–3746; J. Nakazawa, Y. Sakae, M. Aida and
Y. Naruta, J. Org. Chem., 2007, 72, 9448–9455.
4 H. Iwamoto, Y. Yukimasa and Y. Fukazawa, Tetrahedron Lett.,
2002, 43, 8191–8194.
5 S. De Lauzon, R. Quilez, L. Lion, B. Desfosses, B. Desfosses,
I. Lee, M.-A. Sari, S. J. Benkovic, D. Mansuy and J.-P. Mahy, Eur.
J. Biochem., 1998, 257, 121–130.
13 A cavity volume of 87 A3 for 1Zn was estimated by the GRASP
program. Packing coefficients of 0.85 and 0.74 for pyridine and
imidazole were larger than the 55% solution reported by Rebek et al.
(S. Mecozzi and J. Rebek, Chem.–Eur. J., 1998, 4, 1016–1022.).
14 DFT calculations using B3LYP, that is inaccurate for noncovalent
interactions i.e. van der Waals attraction, show that pyridine
coordination inside the host cavity is not preferable (11.35 kJ
molꢀ1) to that from outside of the cavity. M06-2X evaluates
noncovalent interactions, so that the preference of the ligand
coordination in the M06-2X calculations would be due to van
der Waals attractions between calix[4]arene and guest molecule.
The same trend was observed in the DFT calculations of 1Zn–imidazole
complex.
6 P. Timmerman, H. Boerrigter, W. Verboom and D. N. Reinhoudt,
Recl. Trav. Chim. Pays-Bas, 1995, 114, 103–111.
7 K. A. Connors, Binding Constants, John Wiley & Sons, New York,
1987; D. J. Leggett, Computational Methods for the Determination
of Formation Constants Modern Inorganic Chemistry Series, Plenum,
New York, 1985.
8 Host molecules in ref. 3 and 4 are obviously more flexible and
bigger than our host molecule 1Zn; therefore, they might show
15 Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157–167;
Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120,
215–241.
16 M. Nappa and J. S. Valentine, J. Am. Chem. Soc., 1978, 100,
5075–5080; J. R. Miller and G. D. Dorough, J. Am. Chem. Soc.,
1952, 74, 3977–3981.
c
12672 Chem. Commun., 2011, 47, 12670–12672
This journal is The Royal Society of Chemistry 2011