just by tuning the reaction conditions. This strategy is currently
being applied to a wide variety of asymmetric photoreactions both
in solution and in supramolecular systems, and the results will be
reported in due course.
Yamada and Y. Tokugawa, Cation–p controlled solid–state pho-
todimerization of 4-azachalcones, J. Am. Chem. Soc., 2009, 131, 2098–
2099.
6 (a) J. Mattay, Charge transfer and radical ions in photochemistry,
Angew. Chem., Int. Ed. Engl., 1987, 26, 825–845; (b) J. M. Masnovi,
J. K. Kochi, E. F. Hilinski and P. M. Rentzepis, Reactive ion pairs from
the charge-transfer excitation of electron donor–acceptor complexes,
J. Am. Chem. Soc., 1986, 108, 1126–1135; (c) M. Gonza´lez-Be´jar, S. E.
Stiriba, M. A. Miranda and J. Pe´rez-Prieto, Positive photocatalysis
of a Diels–Alder reaction by quenching of excited naphthalene-indole
charge-transfer complex with cyclohexadiene, Org. Lett., 2007, 9, 453–
456; (d) N. Haga, H. Takayanagi and K. Tokumaru, Photoinduced
electron transfer between acenaphthylene and1,4-benzoquinones. For-
mation of dimers of acenaphthylene and 1 : 1-adducts and effect of
excitation mode on reactivity of thecharge-transfer complexes, J. Chem.
Soc., Perkin Trans. 2, 2002, 734–745.
Acknowledgements
Financial supports by Grant-in-Aid for Scientific Research, Japan
Society for the Promotion of Science, Mitsubishi Chemical
Cooperation Fund, and Sumitomo Foundation are gratefully
acknowledged. We thank Prof. Richard G. Weiss for providing
us the polyethylene films.
7 (a) V. Ramamurthy and F. Eaton, Photochemistry and photophysics
within cyclodextrin cavities, Acc. Chem. Res., 1988, 21, 300–306;
(b) J. Lagona, P. Mukhopadhyay, S. Chakrabarti and L. Isaacs,
The cucurbit[n]uril family, Angew. Chem., Int. Ed., 2005, 44, 4844–
4870; (c) J. W. Lee, S. Samal, N. Selvapalam, H. J. Kim and K.
Kim, Cucurbituril homologues and derivatives: New opportunitiesin
supramolecular chemistry, Acc. Chem. Res., 2003, 36, 621–630; (d) J. C.
Scaianoand and H. Garcia, Intrazeolite photochemistry: Toward
supramolecular controlof molecular photochemistry, Acc. Chem. Res.,
1999, 32, 783–793; (e) J. Sivagura, A. Natarajan, L. S. Kaanumalle,
J. Shailaja, S. Uppili, A. Joyand and V. Ramamurthy, Asymmetric
photoreactionswithin zeolites: Role of confinement and alkali metal
ions, Acc. Chem. Res., 2003, 36, 509–521; (f) R. G. Weiss, V.
Ramamurthy and G. S. Hammond, Photochemistry in organic and
confining media: A model, Acc. Chem. Res., 1993, 26, 530–536;
(g) V. Ramamurthy, R. G. Weiss and G. S. Hammond, A model for
the influence of organized media on photochemical reactions, Adv.
Photochem., 1993, 18, 67–236; (h) C. H. Tung, L. Z. Wu, L. P. Zhang and
B. Chen, Supramolecular system as microreactors: control of product
selectivity in organic phototransformation, Acc. Chem. Res., 2003, 36,
39–47; (i) L. R. MacGillivray, G. S. Papaefstathiou, T. Frisˇcˆic´, T. D.
Hamilton, D. K. Bucˇar, Q. Chu, D. B. Varshney and I. G. Georgiev,
Supramolecular control of reactivity in the solid state: from templates
to ladderanes to metal–organic frameworks, Acc. Chem. Res., 2008, 41,
280–291; (j) M. Yoshizawa, J. K. Klosterman and M. Fujita, Functional
molecular flasks: new properties and reactions within discrete, self-
assembled hosts, Angew. Chem., Int. Ed., 2009, 48, 3418–3438; (k) A. K.
Sundaresan and V. Ramamurthy, Consequences of controlling free
space within a reaction cavity with aremotealkyl group: Photochemistry
of para-alkyl dibenzyl ketones within an organiccapsule in water,
Photochem. Photobiol. Sci., 2008, 7, 1555–1564; (l) N. J. Turro,
Supramolecular organic and inorganic photochemistry: Radical pair
recombination in micelles, electron transfer on starburst dendrimers,
and the use of DNA as a molecular wire, Pure Appl. Chem., 1995, 67,
199–208.
8 (a) H. Heitele, Dynamic solvent effects on electron-transfer reactions,
Angew. Chem., Int. Ed. Engl., 1993, 32, 359–377; (b) H. Sumi and
R. A. Marcus, Dynamical effects in electron transfer reactions,
J. Chem. Phys., 1986, 84, 4894–4914; (c) R. A. Marcus, Chemical
and electrochemical electron-transfer theory, Annu. Rev. Phys. Chem.,
1964, 15, 155–196; (d) R. A. Marcus, On the theory of oxidation-
reduction reactions involving electron transfer. 1, J. Chem. Phys., 1956,
24, 966–978. See also: (e) A. C. Benniston and A. Harriman, Charge
on the move: How electron-transfer dynamics depend on molecular
conformation, Chem. Soc. Rev., 2006, 35, 169–179.
9 (a) S. V. Rosokha and J. K. Kochi, Fresh look at electron-transfer
mechanisms viathe donor/acceptor bindings in the critical encounter
complex, Acc. Chem. Res., 2008, 41, 641–653; (b) J. K. Kochi, Inner-
sphere electron transfer in organic chemistry. Relevance to electrophilic
aromatic nitration, Acc. Chem. Res., 1992, 25, 39–47; (c) J. K.
Kochi, Charge-transfer excitation of molecular complexesin organic
and organometallic chemistry, Pure Appl. Chem., 1991, 63, 255–264;
(d) M. Ottolenghi, Charge-transfer complexes in the excited state. Laser
photolysis studies, Acc. Chem. Res., 1973, 6, 153–160.
Notes and references
1 (a) N. J. Turro, V. Ramamurthy and J. C. Scaiano, Modern Molecu-
lar Photochemistry of Organic Molecules, University Science Books,
Sausalito, California, 2010; (b) P. Klan and J. Wirz, Photochemistry
of Organic Compounds, John Willy and Sons, Ltd, 2009. For general
reviews on photochemical organic transformations, see: (c) T. Bach
and J. P. Hehn, Photochemical reactions as key steps in natural
product synthesis, Angew. Chem., Int. Ed., 2011, 50, 1000–1045; (d) N.
Hoffmann, Photochemical reactions as key steps in organic synthesis,
Chem. Rev., 2008, 108, 1052–1103.
2 (a) Y. Inoue, T. Wada, S. Asaoka, H. Sato and J. P. Pete, Photochi-
rogenesis: Multidimensional control of asymmetric photochemistry,
Chem. Commun., 2000, 251–259; (b) H. Buschmann, H. D. Scharf, N.
Hoffmann and P. Esser, The isoinversion principle a general model of
chemical selectivity, Angew. Chem., Int. Ed. Engl., 1991, 30, 477–515;
(c) J. E. Leffler, The enthalpy-entropy relationship and its implications
for organic chemistry, J. Org. Chem., 1955, 20, 1202–1231. Also
see: (d) Y. Inoue, T. Yokoyama, N. Yamasaki and A. Tai, An optical
yield that increases with temperature in a photochemically induced
enantiomeric Isomerization, Nature, 1989, 341, 225–226; (e) Y. Inoue,
H. Ikeda, M. Kaneda, T. Sumimura, S. R. L. Everitt and T. Wada,
Entropy-controlled asymmetric photochemistry: Switching of product
chirality by solvent, J. Am. Chem. Soc., 2000, 122, 406–407; (f) Y. Inoue,
E. Matsushima and T. Wada, Pressure and temperature control of
product chirality in asymmetric photochemistry. Enantiodifferentiating
photoisomer-ization of cyclooctene sensitized by chiral benzenepoly-
carboxylates, J. Am. Chem. Soc., 1998, 120, 10687–10696.
3 (a) N. J. Turro, V. Ramamurthy, W. Cherr and W. Farneth, The effect
of wavelength on organic photoreactions in solution. Reactions from
upper excited states, Chem. Rev., 1978, 78, 125–145. Also see: (b) O. E.
Alawode, C. Robinson and S. Rayat, Clean photodecomposition of
1-methyl-4-phenyl-1H-tetrazole-5(4H)-thiones to carbodiimides pro-
ceeds via a biradical, J. Org. Chem., 2011, 76, 216–222; (c) P. Wang, Y.
Wang, H. Hu, C. Spencer, X. Liang and L. Pan, Sequential removal of
photolabile protecting groups for carbonylswith controlled wavelength,
J. Org. Chem., 2008, 73, 6152–6157.
4 (a) A. Bauer, F. Westka¨mper, S. Grimme and T. Bach, Catalytic
enantioselective reactions driven byphotoinduced electron transfer,
Nature, 2005, 436, 1139–1140; (b) A. G. Griesbeck and H. Heckroth,
Stereoselective synthesis of 2-aminocyclobutanols via photocyclization
of a-amido alkylaryl ketones: Mechanistic implications for the Nor-
rish/Yang reaction, J. Am. Chem. Soc., 2002, 124, 396–403; (c) J. N.
Moorthy, S. Samanta, A. L. Koner, S. Saha and W. M. Nau, Intramolec-
ular O–H ◊ ◊ ◊ O hydrogen-bond-mediated reversal inthe partitioning of
conformationally restricted triplet1,4-biradicals and amplification of
diastereodifferentiation in their lifetimes, J. Am. Chem. Soc., 2008, 130,
13608–13617; (d) Y. Kawanami, T. C. S. Pace, J. Mizoguchi, T. Yanagi,
M. Nishijima, T. Mori, T. Wada, C. Bohne and Y. Inoue, Supramolecu-
lar complexation and enantiodifferentiating photocyclodimerization of
2-anthracenecarboxylic acid with4-aminoprolinol derivatives as chiral
hydrogen-bonding templates, J. Org. Chem., 2009, 74, 7908–7921.
5 (a) P. Lakshminarasimhan, R. B. Sunoji, J. Chandrasekhar and V.
Ramamurthy, Cation–p interaction controlled selective Geometric
photoisomerization of diphenylcyclopropane, J. Am. Chem. Soc., 2000,
122, 4815–4816; (b) S. Yamada, N. Uematsu and K. Yamashita,
Role of Cation–pinteractions in the photodimerization of trans-4-
styrylpyridines, J. Am. Chem. Soc., 2007, 129, 12100–12101; (c) S.
10 (a) H. Saito, T. Mori, T. Wada and Y. Inoue, Diastereoselective
[2+2] photocycloaddition of stilbene to chiral fumarate. Direct versus
charge-transfer excitation, J. Am. Chem. Soc., 2004, 126, 1900–1906;
(b) H. Saito, T. Mori, T. Wada and Y. Inoue, Switching of prod-
uct’s chirality in diastereodifferentiating [2+2] photocycloaddition of
This journal is
The Royal Society of Chemistry and Owner Societies 2011 Photochem. Photobiol. Sci., 2011, 10, 1405–1414 | 1413
©