ACS Combinatorial Science
Research Article
(7) Borges, F.; Roleira, F.; Mihazes, N.; Santana, L.; Uriarte, E.
Simple coumarins and analogues in medicinal chemistry: occurrence,
synthesis and biological activity. Curr. Med.Chem. 2005, 12, 887−916.
(8) For previous synthesis of compound libraries based on
benzopyran “privileged structure” especially remarkable work by
Nicolaou: (a) Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A, J.; Cao,
G.-Q.; Barluenga, S.; Mitchell, H. J. Natural product-like combinatorial
libraries based on privileged structures. 1. General principles and solid-
phase synthesis of benzopyrans. J. Am. Chem. Soc. 2000, 122, 9939−
9953. (b) Nicolaou, K. C.; Pfefferkorn, J. A.; Mitchell, H. J.; Roecker,
A. J.; Barluenga, S.; Cao, G.-Q.; Affleck, R. L.; Lillig, J. E. Natural
product-like combinatorial libraries based on privileged structures. 2.
Construction of a 10 000-membered benzopyran library by directed
split-and-pool chemistry using NanoKans and optical encoding. J. Am.
Chem. Soc. 2000, 122, 9954−9967. (c) Nicolaou, K. C.; Pfefferkorn, J.
A.; Barluenga, S.; Mitchell, H. J.; Roecker, A. J.; Cao, G.-Q. Natural
product-like combinatorial libraries based on privileged structures. 3.
The “libraries from libraries” principle for diversity enhancement of
benzopyran libraries. J. Am. Chem. Soc. 2000, 122, 9968−9976.
(9) (a) Ko, S. K.; Jang, H. J.; Kim, E.; Park, S. B. Concise and
diversity-oriented synthesis of novel scaffolds embedded with
privileged benzopyran motif. Chem. Commun. 2006, 2962−2964.
(b) Oh, S.; Jang, H. J.; Ko, S. K.; Ko, Y.; Park, S. B. Construction of a
polyheterocyclic benzopyran library with diverse core skeletons
through diversity-oriented synthesis pathway. J. Comb. Chem. 2010,
12, 548−558.
AUTHOR INFORMATION
■
Corresponding Author
Funding
This study was supported by (1) National Research Foundation
of Korea (NRF) grants (NRF-2009−0078236); (2) MarineBio
Program funded by Ministry of Land, Transport, and Maritime
Affairs (MLTM), Korea; and (3) the World Class University
program (R31-−2010-−000-10032-0). M.Z. and M.K. are
grateful for the fellowships awarded by the BK21 Program
and the Seoul Science Fellowship.
REFERENCES
■
(1) (a) Schreiber, S. L. Organic synthesis toward small-molecule
probes and drugs. P. Natl. Acad. Sci. USA. 2011, 108, 6699−6702.
(b) Hubel, K.; Leßmann, T.; Waldmann, H. Chemical biology―
̈
idenatification of small molecule modulators of cellular activity by natural
product inspired synthesis. Chem. Soc. Rev. 2008, 37, 1361−1374.
(c) Schreiber, S. L. The small-molecule approach to biology. Chem.
Eng. News 2003, 81, 51−61.
(2) (a) Drewry, D. H.; Macarron, R. Enhancements of screening
collections to address areas of unmet medical need: an industry
perspective. Curr. Opin. Chem. Bio. 2010, 14, 289−298. (b) Bleicher,
K. H.; Bohm, H.-J.; Muller, K.; Alanine, A. I. Hit and lead generation:
̈
̈
(10) Selected reviews on fluorous technology in organic synthesis:
(a) Zhang, W. Fluorous linker-facilitated chemical synthesis. Chem.
Rev. 2009, 109, 749−795. (b) Zhang, W. Fluorous synthesis of
heterocyclic systems. Chem. Rev. 2004, 104, 2531−2556.
(11) For the synthesis of the precursor of the aza dienophile,
4-substituted-1,2,4-triazoline-3,5-dione, and IBD-based in situ oxida-
tive activation: (a) Cookson, R. C.; Gupte, S. S.; Stevens, D. R.; Watts,
C. T. 4-Phenyl-1,2,4-triazoline-3,5-dione. Org. Synth. 1971, 51, 121−
125. (b) Little, T.; Meara, J.; Ruan, F.; Nguyen, M.; Qabar, M.
Efficient synthesis of novel 4-substituted urazoles. Syn. Commun. 2002,
beyond high-throughput screening. Nat. Rev. Drug Discovery 2003, 2,
369−378. (c) Dandapani, S.; Marcaurelle, L. A. Accessing new
chemical space for “undruggable” targets. Nat. Chem. Biol. 2010, 6,
861−863.
(3) (a) Schreiber, S. L. Target-oriented and diversity-oriented organic
synthesis in drug discovery. Science 2000, 287, 1964−1968. (b) Tan,
D. S. Diversity-oriented synthesis: exploring the intersections between
chemistry and biology. Nat. Chem. Biol. 2005, 1, 74−84. (c) Galloway,
W. R. J. D.; Llobet, A. I.; Spring, D. R. Diversity-oriented synthesis as a
tool for the discovery of novel biologically active small molecules. Nat.
Commun. 2010, 1, 80.
(4) (a) Oh, S.; Park, S. B. A design strategy for drug-like
polyheterocycles with privileged substructures for discovery of specific
small-molecule modulators. Chem. Commun. 2011, 47, 12754−12761.
(b) Kim, J.; Song, H.; Park, S. B. Orthogonal regioselective synthesis of
N-alkyl-3-substituted tetrahydroindazolones. Eur. J. Org. Chem. 2010,
20, 3815−3822. (c) Srivastava, A. K.; Song, H.; Park, S. B. Diversity-
oriented synthesis of functionalized polyheterocycles from Garner
Aldehyde. Synthesis 2011, 14, 2215−2222.
32, 1741−1749. (c) Kiriazis, A.; Ruffer, T.; Jantti, S.; Lang, H.; Yli-
̈
̈
Kauhaluoma, J. Stereoselective aza Diels−Alder reaction on solid
phase: A facile synthesis of hexahydrocinnoline derivatives. J. Comb.
Chem. 2007, 9, 263−266.
(12) (a) Kolb, H. C.; Sharpless, K. B. The growing impact of click
chemisty on drug discovery. Drug Discovery Today 2003, 8, 1128−
1137. (b) Appendino, G.; Bacchiega, S.; Minassi, A.; Cascio, M. G.;
Petrocellis, L. D.; Marzo, V. D. The 1,2,3-triazole ring as a peptide- and
olefinomimetic element: discovery of click vanilloids and cannabinoids.
Angew. Chem., Int. Ed. 2007, 46, 9312−9315.
(5) (a) Zhu, M.; Kim, M. H.; Lee, S.; Bae, S. J.; Kim, S. H.; Park, S. B.
Discovery of novel benzopyranyl tetracycles that act as inhibitors of
osteoclastogenesis induced by receptor activator of NF-κB ligand.
J. Med. Chem. 2010, 53, 8760−8764. (b) Oh, S.; Kim, S. J.; Hwang,
J. H.; Lee, H. Y.; Ryu, M. J.; Park, J.; Jo, Y. S.; Kim, Y. K.; Lee, C.-H.;
Kweon, K. R.; Shong, M.; Park, S. B. Antidiabetic and antiobesity
effects of ampkinone (6f), a novel small molecule activator of AMP-
activated protein kinase. J. Med. Chem. 2010, 53, 7405−7413. (c) Oh,
S.; Nam, H. J.; Park, J.; Beak, S. H.; Park, S. B. Development of a
benzopyran-containing androgen receptor antagonist to treat anti-
androgen-resistant prostate cancer. ChemMedChem 2010, 5, 529−533.
(d) Oh, S.; Cho, S. W.; Yang, J.-Y.; Sun, H. J.; Chung, Y. S.; Shin, C.
S.; Park, S. B. Discovery of a novel benzopyranyl compound as a
potent in vitro and in vivo osteogenic agent. Med. Chem. Commun.
2011, 2, 76−80.
(6) (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. The
combinatorial synthesis of bicyclic privileged structures or privileged
substructures. Chem. Rev. 2003, 103, 893−930. (b) DeSimone, R. W.;
Currie, K. S.; Mitchell, S. A.; Darrow, J. W.; Pippin, D. A. Privileged
Structures: Application in drug discovery. Comb. Chem. High
Throughput Screening 2004, 7, 473−493. (c) Welsch, M. E.; Snyder,
S. A.; Stockwell, B. R. Privileged scaffolds for library design and drug
discovery. Curr. Opin. Chem. Biol. 2010, 14, 347−361.
(13) (a) Wu, P.; Fokin, V. V. Catalytic azide-alkyne cycloaddition:
reactivity and applications. Aldrichim. Acta 2007, 40, 7−17. (b) Meldal,
M.; Tornøe, W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev.
2008, 108, 2952−3015.
(14) For the synthesis of organic azides: (a) Zhu, W.; Ma, D.
Synthesis of aryl azides and vinyl azides via proline-promoted CuI-
catalyzed coupling rections. Chem.Commun. 2004, 888−889. (b) An-
dersen, J.; Madsen, U.; Bjorkling, F.; Liang, X. Rapid synthesis of aryl
̈
azides from aryl halides under mild conditions. Synlett. 2005, 12,
2209−2213. (c) Liu, Q.; Tor, Y. Simple conversion of aromatic
anmines into azides. Org. Lett. 2003, 5, 2571−2572.
(15) (a) Tam, A.; Arnold, U.; Soellner, M. B.; Raines, R. T. Protein
Prosthesis: 1,5-disubstituted[1,2,3]triazoles as cis-peptide bond
surrogates. J. Am. Chem. Soc. 2007, 129, 12670−12671. (b) Ahsanullah.;
Schmieder, P.; Kuhne, R.; Rademann, J. Metal-free, regioselective
triazole ligations that deliver locked cis peptide mimetics. Angew. Chem.,
Int. Ed. 2009, 48, 5042−5045. (c) Odlo, K.; Hentzen, J.; Chabert, J. F.
d.; Ducki, S.; Gani, O. A. B. S. M.; Sylte, I.; Skrede, M.; Flørenesd, V. A.;
Hansen, T. V. 1,5-Disubstituted 1,2,3-triazoles as cis-restricted analogues
of combretastatin A-4: Synthesis, molecular modeling and evaluation as
cytotoxic agents and inhibitors of tubulin. Bioorg. Med. Chem. 2008, 16,
4829−4838.
133
dx.doi.org/10.1021/co2001907 | ACS Comb. Sci. 2012, 14, 124−134