Journal of the American Chemical Society
Communication
(6) Wegner, G. Z. Naturforscher. 1969, 24 (b), 824. Wegner, G. J.
Polym. Sci., Polym. Lett. Edn. 1971, 9, 133. Wegner, G. Pure Appl. Chem.
1977, 49, 443.
(7) Xu, Y.; Smith, M.; Geer, M.; Pellechia, P.; Brown, J.; Wibowo, A.;
Shimizu, L. J. Am. Chem. Soc. 2010, 132, 5334.
(8) Sun, A.; Lauher, J.; Goroff, N. Science 2006, 312, 1030.
(9) Huo, Q.; Wang, S.; Pisseloup, A.; Verma, D.; Leblanc, R. Chem.
Commun. 1999, 16, 1601.
(10) Biesalski, M.; Tu, R.; Tirrell, M. V. Langmuir 2005, 21, 5663.
(11) Jahnke, E.; Lieberwirth, I.; Severin, N.; Rabe, J. P.; Frauenrath,
H. Angew. Chem., Int. Ed. 2006, 45, 5383.
light. Spatially resolved PDA formation along the length of the
peptide−DA noodle was achieved by using a TEM grid as a
shadow mask during the photopolymerization (Figure 7c,d).
PDA formation only occurred where the shadow mask allowed
the transmission of the UV light. When viewed with POM, the
locations with and without PDA formation are clearly visible as
areas of different color and birefringence. This spatially resolved
polymerization produces ‘microbarcodes’ and could be used to
prepare electronic or mechanical gradients throughout a
macroscopic noodle made up of aligned conjugated polymers.
Self-assembling nanostructures with polymerizable units
provide new and unique ways to further the development of
electronic nanomaterials. The thermodynamic equilibria
associated with molecular self-assembly processes render
them dynamic and reversible, and they could be disassembled
under suitable stimuli, whether intentional or not. The PDA-
based nanofibers presented here allow for postassembly
manipulation while maintaining the supramolecular structure
through intermolecular covalent links formed during polymer-
ization. The extrusion alignment technique provides a facile
way to access aligned conjugated polymers without the use of
physical ‘director’ influences or the application of external
fields. The hydrogel noodles described here are made up of
globally aligned π-conjugated peptide−PDA polymers that have
ambipolar semiconductor properties, and such manipulatable
aligned macrostructures could be useful in future research to
directly interface functional nanomaterials with common solid-
state devices and biological systems.
(12) Lowik, D. W. P. M; Shklyarevskiy, I. O.; Ruizendaal, L.;
̈
Christianen, P. C. M.; Maan, J. C.; van Hest, J. C. M. Adv. Mater. 2007,
19, 1191.
(13) Hsu, L.; Cvetanovich, G. L.; Stupp, S. I. J. Am. Chem. Soc. 2008,
130, 3892.
(14) Stone, D. A.; Hsu, L.; Wheeler, N. R.; Wilusz, E.; Zukas, W.;
Wnek, G. E.; Korley, L. T. J. Soft Matter. 2011, 7, 2449.
(15) Aoki, K.; Kudo, M.; Tamaoki, N. Org. Lett. 2004, 6, 4009.
(16) Matsubara, H.; Shimura, T.; Hasegawa, A.; Semba, M.; Asano,
K.; Yamamoto, K. Chem. Lett. 1998, 27, 1099.
(17) For experimental details, see Supporting Information.
(18) Sarkar, A.; Okada, S.; Matsuzawa, H.; Matsudab, H.; Nakanishi,
H. J. Mater. Chem. 2000, 10, 819.
(19) Matsuo, H.; Okada, S.; Nakanishi, H.; Matsuda, H.; Takaragi, S.
Polym. J. 2002, 34, 825.
(20) Chan, Y-H; Lin, J-T; Chen, I-W P.; Chen, C.-H. J. Phys. Chem.
B. 2005, 109, 19161.
́
(21) Neabo, J.; Tohoundjona, K.; Morin, J. Org. Lett. 2011, 13, 1358.
(22) Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.;
McLeish, T. C.; Semenov, A. N.; Boden, N. Proc. Natl. Acad. Sci. U.S.A.
2001, 98, 11857.
ASSOCIATED CONTENT
* Supporting Information
(23) Charych, D. H.; Nagy, J. O.; Spevak, W.; Bednarski, M. D.
Science 1993, 261, 585.
(24) Bockrath, M.; Markovic, N.; Shepard, A.; Tinkham, M.;
Gurevich, L.; Kouwenhoven, L. P.; Wu, M. W.; Sohn, L. L. Nano
Lett. 2002, 2, 187.
(25) Staii, C.; Johnson, A. T.; Pinto, N. J. Nano Lett. 2004, 4, 859.
(26) Methods for aligning conjugated polymers see: Semiconducting
Polymers Applications, Properties, and Synthesis (ACS Symposium);
Hsieh, B. R. , Wei, Y., Eds; American Chemical Society: Washington,
DC, 1999; p 735.
(27) Heil, H.; Finnberg, T.; von Malm, N.; Schmechel, R.; von
Seggern, H. J. App. Phys. 2003, 93, 1636.
(28) Suzuki, M.; Ferencz, A.; Iida, S.; Enkelmann, V.; Wegner, G.
Adv. Mater. 1993, 5, 359.
(29) Tajima, K.; Aida, T. Chem. Commun. 2000, 24, 2399.
(30) Zhu, Z.; Swager, T. M. J. Am. Chem. Soc. 2002, 124, 9670.
(31) Kubo, Y.; Kitada, Y.; Wakabayashi, R.; Kishida, T.; Ayabe, M.;
Kaneko, K.; Takeuchi, M.; Shinkai, S. Angew. Chem., Int. Ed. 2006, 45,
1548.
■
S
Experimental, characterization, and instrumental details, and
additional UV−vis and AFM images. This material is available
AUTHOR INFORMATION
Corresponding Author
■
Present Address
⊥Macromolecular Science and Engineering, Case Western
Reserve University, 2100 Adelbert Road, Cleveland, Ohio
44106, United States.
ACKNOWLEDGMENTS
■
We thank Dr. J. Michael McCaffery (JHU IIC) and Ms. Julie
Bitter for help acquiring and interpreting POM images. S.R.D.
was an NSF-IGERT Fellow through JHU’s INBT. We thank
Johns Hopkins University, JHU’s Institute for NanoBioTech-
nology, the National Science Foundation (DMR-1106167,
N.M.), and the Department of Energy Office of Basic Energy
Sciences (DE-SC0004857, J.D.T. peptide nanomaterials) for
generous support.
(32) Takeuchi, M.; Fujikoshi, C.; Kubo, Y.; Kaneko, K.; Shinkai, S.
Angew. Chem., Int. Ed. 2006, 45, 5494.
(33) Zhang, S.; Greenfield, M. A.; Mata, A.; Palmer, L. C.; Bitton, R.;
Mantei, J. R.; Aparicio, C.; de la Cruz, M. O.; Stupp, S. I. Nat. Mater.
2010, 9, 594.
(34) Wall, B. D.; Diegelmann, S. R.; Zhang, S.; Dawidczyk, T. J.;
Wilson, W. L.; Katz, H. E.; Mao, H. Q.; Tovar, J. D. Adv. Mater. 2011,
23, 5009.
REFERENCES
■
̈
(1) Schillinger, E. K.; Mena-Osteritz, E.; Hentschel, J.; Borner, H. G.;
Bauerle, P. Adv. Mater. 2009, 21, 1562.
(2) Diegelmann, S. R.; Gorham, J. M.; Tovar, J. D. J. Am. Chem. Soc.
̈
2008, 130, 13840.
(3) Stone, D. A.; Hsu, L.; Stupp, S. I. Soft Matter 2009, 5, 1990.
(4) Vadehra, G. S.; Wall, B. D.; Diegelmann, S. R.; Tovar, J. D. Chem.
Commun. 2010, 46, 3947.
(5) Mba, M.; Moretto, A.; Armelao, L.; Crisma, M.; Toniolo, C.;
Maggini, M. Chem.Eur. J. 2011, 17, 2044.
2031
dx.doi.org/10.1021/ja211539j | J. Am. Chem.Soc. 2012, 134, 2028−2031