et al. Malar J (2017) 16:110
Aguiar
Page 10 of 11
Abbreviations
7. Tripathi AC, Gupta SJ, Fatima GN, Sonar PK, Verma A, Saraf SK. 4-Thiazolidi-
nones: the advances continue. Eur J Med Chem. 2014;72:52–77.
8. Solomon VR, Haq W, Srivastava K, Puri SK, Katti SB. Synthesis and antima-
larial activity of side chain modified 4-aminoquinoline derivatives. J Med
Chem. 2007;50:394–8.
9. Neuenfeldt PD, Drawanz BB, Aguiar ACC, Figueiredo JF, Krettli AU, Cunico
W. Multicomponent synthesis of new primaquine thiazolidinone deriva-
tives. Synthesis. 2011;23:3866–70.
BGM: kidney cell line from Buffalo Green Monkey Kidney; EEFs: exoerythrocytic
forms; G6PD: glucose-6-phosphate dehydrogenase; HEPA 1-6: mouse hepato-
cyte cell line; HepG2: human hepatoma cell line; MDL50: drug concentration
that killed 50% of the cells; PQ: primaquine; PQ-TZs: primaquine derivatives; Tz:
thiazolidinones.
Authors’ contributions
ACCA, FJBF, PS, FZ and AUK designed, analysed and interpreted the biological
experiments. BBD, PDN and WC synthesized the compounds studied. TK pro-
vided red blood cells from G6PD deficient donors. ACCA, WC, PS, FZ and AUK
wrote the manuscript. All authors read and approved the final manuscript.
10. Katsuragawa TH, Gil LHS, Stábile RG, Pires MG, Bonini-Domingos CR. Aval-
iação da incidência da deficiência de Glicose-6-Fosfato Desidrogenase
(G6PD) e perfil hematológico em indivíduos de uma região de Rondônia.
Rev Bras Hematol Hemoter. 2004;26:268–73.
11. Madureira MC, Martins AP, Gomes M, Paiva J, Proença da Cunha A, et al.
Antimalarial activity of medicinal plants used in traditional medicine in
Sao Tomé and Príncipe islands. J Ethnopharmacol. 2002;8:23–9.
12. Bézivin C, Tomasi S, Lohézic-Le FD, Boustie J. Cytotoxic activity of some
lichen extracts on murine and human cancer cell lines. Phytomedicine.
2003;10:499–503.
13. Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol.
1983;54:275–87.
14. Gwadz RW, Koontz LC, Miller LH, Davidson DE. Plasmodium gallinaceum:
avian screen for drugs with radical curative properties. Exp Parasitol.
1983;55:188–96.
Author details
1 Centro de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, Belo
Horizonte, MG 30190-002, Brazil. 2 Faculdade de Medicina, Universidade Fed-
eral de Minas Gerais, Av. Alfredo Balena, 190, Belo Horizonte, MG 30130-100,
Brazil. 3 Department of Molecular Microbiology and Immunology, Johns
Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD
21205, USA. 4 Laboratório de Química Aplicada à Bioativos, Centro de Ciências
Químicas, Farmacêuticas e de Alimentos, UFPel, Campus Universitário s/
no, Pelotas, RS 98001-970, Brazil. 5 Laboratório de Epidemiologia, Fundação
Osvaldo Cruz-Fiocruz Rondônia, Bairro Lagoa, Porto Velho, RO, Brazil.
15. Carvalho LH, Ferrari WM, Krettli AU. A method for screening drugs against
the liver stages of malaria using Plasmodium gallinaceum and Aedes
mosquitoes. Braz J Med Biol Res. 1992;25:247–55.
16. Sinnis P, Vega PDL, Coppi A, Krzych U, Mota MM. Quantification of sporo-
zoite invasion, migration, and development by microscopy and flow
cytometry. Methods Mol Biol. 2013;923:385–400.
Acknowledgements
We thank Dr. Luciano Moreira (FIOCRUZ-Minas) for the insectary facilities, and
to the Bloomberg Family Foundation for their support of the Insectary facilities
and Parasitology Core Facilities at the Johns Hopkins Malaria Research Institute
(JHMRI).
17. Bruña-Romero O, Hafalla JC, González-Aseguinolaza G, Sano G, Tsuji M,
Zavala F. Detection of malaria liver-stages in mice infected through the
bite of a single Anopheles mosquito using a highly sensitive real-time
PCR. Int J Parasitol. 2001;31:1499–502.
Competing interests
The authors declare that they have no competing interests.
Availability of data and materials
All data generated or analysed during this study are included in this published
article [and its supplementary information files].
18. Wang C, Qin X, Huang B, He F, Zeng C. Hemolysis of human erythrocytes
induced by melamine-cyanurate complex. Biochem Biophys Res Com-
mun. 2010;402:773–7.
19. Brewer GJ, Tarlov AR, Kellermeyer RW, Alving AS. The hemolytic effect of
primaquine. XV. Role of methemoglobin. J Lab Clin Med. 1962;59:905–17.
20. Hill DR, Baird JK, Parise ME, Lewis LS, Ryan ET, Magill AJ. Primaquine:
report from CDC expert meeting on malaria chemoprophylaxis I. Am J
Trop Med Hyg. 2006;75:402–15.
21. Walsh DS, Eamsila C, Sasiprapha T, Sangkharomya S, Khaewsathien P,
Supakalin P, et al. Efficacy of monthly tafenoquine for prophylaxis of
Plasmodium vivax and multidrug-resistant P. falciparum malaria. J Infect
Dis. 2004;190:1456–63.
22. Ebstie YA, Abay SM, Tadesse WT, Ejigu DA. Tafenoquine and its potential
in the treatment and relapse prevention of Plasmodium vivax malaria: the
evidence to date. Drug Des Dev Ther. 2016;26(10):2387–99.
23. Hohl RJ, Kennedy EJ, Frischer H. Defenses against oxidation in human
erythrocytes: role of glutathione reductase in the activation of glucose
decarboxylation by hemolytic drugs. J Lab Clin Med. 1991;117:325–31.
24. Luzzatto L, Seneca E. G6PD deficiency: a classic example of phar-
macogenetics with on-going clinical implications. Br J Haematol.
2014;164:469–80.
25. Santana MS, de Lacerda MV, Barbosa MD, Alecrim WD, Alecrim MD.
Glucose-6-phosphate dehydrogenase deficiency in an endemic area for
malaria in Manaus: a cross-sectional survey in the Brazilian Amazon. PLoS
ONE. 2014;4:5259.
26. Mihaly GW, Ward SA, Edwards G, Orme MLE, Breckenridge AM. Phar-
macokinetics of primaquine in man: identification of the carboxylic
acid derivative as a major plasma metabolite. Br J Clin Pharmacol.
1984;17:441–6.
27. Vangapandu S, Sachdeva S, Jain M, Singh S, Singh PP, Kaul CL, et al.
8-quinolinamines and their pro prodrug conjugates as potent blood-
schizontocidal antimalarial agents. Bioorg Med Chem. 2003;11:4557–68.
28. Mata G, Rosário VE, Iley J, Constantino L, Moreira R. A carbamate-based
approach to primaquine prodrugs: antimalarial activity, chemical stability
and enzymatic activation. Bioorg Med Chem. 2012;15:886–92.
29. Dell’Agli M, Parapini S, Galli G, Vaiana N, Taramelli D, Sparatore A, et al.
High antiplasmodial activity of novel plasmepsins I and II inhibitors. J
Med Chem. 2006;49:7440–9.
Funding
This work had financial support from the Conselho Nacional de Pesquisas e
Desenvolvimento (CNPq) Edital MCT/CNPq 09/2009 PRONEX, Rede de Malária
(305314/2009-2), MCT/CNPq/CT/MS/SCTIE/DECIT 034/2008 (575746/2008-4),
and Fundação de Amparo a Pesquisa de Minas Gerais-FAPEMIG (Universal
CBB-APQ-01692-11; and PRONEX Rede Malária). CNPq also provided fellow-
ships to the authors (AUK, ACCA, FJBF, WC, and BBD); The Universidade Federal
de Pelotas and CAPES provided fellowships to PDN. The work was also sup-
ported by NIH grant R01AI056840 (PS).
Received: 12 October 2016 Accepted: 26 February 2017
References
1. WHO. World malaria report 2015. Geneva: World Health Organization;
3. Baird JK, Hoffman SL. Primaquine therapy for malaria. Clin Infect Dis.
2004;39:1336–45.
4. WHO. Global malaria programme. Global plan for artemisinin resistance
containment (GPARC). Geneva: World Health Organization; 2011. http://
5. Carmona-Fonseca J, Alvarez G, Maestre A. Methemoglobinemia and
adverse events in Plasmodium vivax malaria patients associated with high
doses of primaquine treatment. Am J Trop Med Hyg. 2009;80:188–93.
6. Vale N, Moreira R, Gomes P. Primaquine revisited six decades after its
discovery. Eur J Med Chem. 2009;44:937–53.