The dominant interactions – van der Waals interactions and
the hydrophobic effect – observed in the complexation of local
anesthetics bearing a tertiary amine moiety, such as novocaine or
tetracaine, are drastically changed when specific interactions with
CD are allowed. The strong hydrogen bonding between the H2N
group of LA and the alkoxide –O- group of CD not only give high
stable inclusion complexes, but also a change in the binding mode
of the LA and even in the stoichiometry of the complex. Therefore,
the complexation with cyclodextrins enhances the stability of LA,
which are protected from reagents in the bulk water phase.
13 N. Takisawa, K. Shirahama and I. Tanaka, Interactions of amphiphilic
drugs with a-, b-, and g-cyclodextrins, Colloid Polym. Sci., 1993, 271,
499.
14 E. Iglesias, Inclusion complexation of novocaine by b-cyclodextrin in
aqueous solutions, J. Org. Chem., 2006, 71, 4383.
15 E. Iglesias, Investigation of physico-chemical behaviour of local
anesthetics in aqueous SDS solutions, New J. Chem., 2008, 32,
517.
16 I. Iglesias-Garc´ıa, I. Brandariz and E. Iglesias, Fluorescence study of
tetracaine-cyclodextrin inclusion complexes, Supramol. Chem., 2010,
22, 228.
17 B. Reija, W. Al-Soufi, M. Novo and J. Va´zquez-Tato, Specific In-
teraction in the inclusion complexes of pyronines Y and B with b-
cyclodextrin, J. Phys. Chem. B, 2005, 109, 1364.
18 R. Stewart, The Proton Applications to Organic Chemistry, Academic
Press, Inc., 1985, chap. 3.
Acknowledgements
19 G. S. Cox and N. J. Turro, Methyl salicylate fluorescence as a probe of
the geometry of complexation to cyclodextrins, Photochem. Photobiol.,
1984, 40, 185.
20 A. Dom´ınguez, A. Ferna´ndez, N. Gonza´lez, E. Iglesias and L.
Montenegro, Determination of critical micelle concentration of some
surfactants by three techniques., J. Chem. Educ., 1997, 74, 1227.
21 M. V. Rekharsky and Y. Inoue, Complexation thermodynamics of
cyclodextrins, Chem. Rev., 1998, 98, 1875.
We are indebted to Dr Mercedes Novo of the Facultad de Ciencias,
Campus de Lugo, University of Santiago de Compostela, for the
time-resolved fluorescence measurements. Financial support from
the Direccio´n General de Investigacio´n (Ministerio de Educacio´n
y Ciencia) of Spain and FEDER (Project CTQ2005-07428/BQU)
and from Direccio´n General de Programas y Transferencia de
Conocimiento (Ministerio de Ciencia e Innovacio´n) of Spain
(Project CTQ2008-04429/BQU) is gratefully acknowledged.
22 A. Ueno and T. Osa, Host–guest photochemistry in solution, in
Photochemistry in Organized and Constrained Media, V. Ramamurthy,
ed., VCH Publishers, Inc., New York, 1991, chap. 16.
23 G. Krishnamoorthy and S. K. Dogra, TICT of 2-(4¢-N,n-
dimethylamino phenyl)pyrido[3,4-d]imidazole in cyclodextrins: Effect
of pH, J. Phys. Chem. A, 2000, 104, 2542.
References
24 (a) S. Monti, L. Flamigni, A. Martelli and P. Bortolus, Photochemisty
of benzophenone-CD inclusion complexes., J. Phys. Chem., 1988,
92, 4447; (b) S. Monti, G. Ko¨hler and G. Grabner, Photophysics
and photochemistry of methylated phenols in b-cyclodextrin inclusion
complexes, J. Phys. Chem., 1993, 97, 13011; (c) S. Monti, G. Marconi,
F. Manoli, P. Bortolus, B. Mayer, G. Grabner, G. Ko¨hler, W. Boszczyk
and K. Rotkiewicz, Aspectroscopic and structural characterization
of the inclusion complexes of p-dimethylaminobenzonitrile with cy-
clodextrins., Phys. Chem. Chem. Phys., 2003, 5, 1019; (d) S. Monti, P.
Bartolus, F. Manoli, G. Marconi, G. Grabner, G. Ko¨hler, B. Mayer, W.
Boszczyk and K. Rotkiewicz, Microenvironmental effects in the excited
state properties of p-dimethylaminobenzonitrile complexed to a- and
b-cyclodextrin, Photochem. Photobiol. Sci., 2003, 2, 203.
25 K. Takahashi, Organic reactions mediated by cyclodextrins, Chem.
Rev., 1998, 98, 2013.
26 E. Iglesias, Cyclodextrins as enzyme models in nitrosation and in acid–
base hydrolysis reactions of alkyl nitrites., J. Am. Chem. Soc., 1998,
120, 13057.
27 K. A. Connors, Binding Constants. The Measurements of Molecular
Complex Stability, Wiley, New York, 1987, chap. 8.
28 L. M. A. Pinto, L. F. Fraceto, M. H. A. Santana, T. A. Pertinhez, S. Jr.
Oyama and E. Paula, Physicochemical characterization of benzocaine-
b-cyclodextrin inclusion complexes, J. Pharm. Biomed. Anal., 2005, 39,
956.
1 H. Matsuki, H. Satake, S. Kaneshina, P. R. Krishna and I. Ueda,
Surface and colloid properties of local anesthetic solutions, Curr. Topics
Coll. Interface Sci., 1997, 2, 69.
2 P. T. Frangopol and D. Mihailescu, Interactions of some local
anesthetics and alcohols with membranes, Colloids Surf., B, 2001, 22,
3.
3 W. C. Bowman and M. J. Rand, Textbook of Pharmacology, Blackwell
Sci. Publs., University Press, Cambridge, 1990.
4 Local Anesthetics, Handbook of Experimental Pharmacology, ed.
J. M. Ritchie and G. R. Strichartz, Springer-Verlag, Berlin, 1987, vol.
81, chap. 2.
5 J. Szejtli, Cyclodextrin complexed generic drugs are generally not-bio-
equivalent with the reference products: therefore the increase in number
of marketed drug/cyclodextrin formulations is so slow, J. Inclusion
Phenom. Macrocyclic Chem., 2005, 52, 1.
6 G. Savelli, R. Germani and L. Brinchi, in Reaction and Synthesis in
Surfactant Systems, T. Texter, ed., Marcel Dekker, Inc.: New York,
2001, vol. 100, chap. 8.
7 C. A. Bunton, F. Nome, F. H. Quina and L. S. Romsted, Ion binding
and reactivity at charged aqueous interfaces, Acc. Chem. Res., 1991, 24,
357.
8 P. Speicer, Biological and technological relevance of amphiphilic
structures in apolar medium, in Reverse Micelles, P. L. Luise and
B. E. Straub, ed., Plenum Press: New York, 1984, pp. 339–346.
9 K. A. Connors, Measurement of cyclodextrin complex stability con-
stants, in Comprehensive Supramolecular Chemistry, J. Szejtli, T. Osa,
ed. Pergamon, 1996, vol. 3, pp. 205–241.
10 J. Szejtli, Cyclodextrin inclusion complexes, Cyclodextrin Technology,
Kluwer Acad. Publishers, Netherlands, 1988, chap. 2.
11 O. S. Tee, The stabilization of transition states by cyclodextrins and
other catalysts., Adv. Phys. Org. Chem., 1994, 29, 1, and references
therein.
29 D. L. H. Williams, Nitrosation Reactions and the Chemistry of Nitric
Oxide, Elsevier, 2004, chap. 1.
30 (a) D. M. Davies and M. E. Deary, Stability of 1 : 1 and 2 : 1a-CD-p-
nitrophenyl acetate complexes and the effect of a-CD on acyl transfer
to peroxide anion nucleophiles, J. Chem. Soc., Perkin Trans. 2, 1999,
1027; (b) E. Iglesias, Ester hydrolysis and enol nitrosation reactions of
ethyl cyclohexanone-2-carboxylate inhibited byb-cyclodextrin., J. Org.
Chem., 2000, 65, 6583.
31 J. Szejtli, Introduction and general overview of cyclodextrin chemistry,
Chem. Rev., 1998, 98, 1743.
12 W. Saenger, Cyclodextrin inclusion compounds in research and indus-
try, Angew. Chem., Int. Ed. Engl., 1980, 19, 344.
542 | Photochem. Photobiol. Sci., 2011, 10, 531–542
This journal is
The Royal Society of Chemistry and Owner Societies 2011
©