magnesium(I) dimer have led to different outcomes, which
include the formation of an unprecedented b-diketiminato
tin(I) dimer. The results obtained here, in combination with
those from previous studies,8,9 have revealed that subtle
changes in the steric profile of b-diketiminate (Nacnac) ligands
can have very marked effects on the course that reductions of
compounds of the type, [(Nacnac)ECl], can take.
CJ gratefully acknowledges financial support from the
Australian Research Council, the donors of The American
Chemical Society Petroleum Research Fund, and the US Air
Force Asian Office of Aerospace Research and Development.
CS thanks the Alexander von Humboldt Foundation. Part of
this research was undertaken on the MX1 beamline at the
Australian Synchrotron, Victoria, Australia.
Notes and references
Fig. 2 Molecular structure of 8 (25% thermal ellipsoids; hydrogen
atoms omitted). Selected bond lengths (A) and angles (1): Ge(1)–N(2)
1.8477(14), Ge(1)–C(1) 2.0079(17), Ge(1)–N(1) 2.0402(14),
Mg(1)–N(2) 1.9504(16), Mg(1)–N(4) 2.0206(15), Mg(1)–N(3)
2.0216(15), N(1)–C(3) 1.311(2), C(1)–C(2) 1.356(2), C(2)–C(3)
1.451(2), N(2)–Ge(1)–C(1) 123.24(6), N(2)–Ge(1)–N(1) 103.54(6),
1 Selected reviews on ditetrelyne chemistry: (a) P. P. Power, Acc.
Chem. Res., 2011, 44, 627; (b) A. Sekiguchi, Pure Appl. Chem.,
2008, 80, 447; (c) P. P. Power, Organometallics, 2007, 26, 4362. For
an amido-digermyne, see ; (d) J. Li, C. Schenk, C. Goedecke,
G. Frenking and C. Jones, J. Am. Chem. Soc., 2011, 133,
18622.
2 See, for example, (a) C. Jones, S. J. Bonyhady, N. Holzmann,
G. Frenking and A. Stasch, Inorg. Chem., 2011, 50, 12315;
(b) D. Gau, R. Rodriguez, T. Kato, N. Saffron-Merceron, A. de
Cozar, F. P. Cossio and A. Baceiredo, Angew. Chem., Int. Ed.,
2011, 50, 1092; (c) S. Khan, R. Michel, J. M. Dietrich, R. A. Mata,
H. W. Roesky, J.-P. Demers, A. Lange and D. Stalke, J. Am.
Chem. Soc., 2011, 133, 17889; (d) S. S. Sen, A. Jana, H. W. Roesky
and C. Schulzke, Angew. Chem., Int. Ed., 2009, 48, 8536;
(e) W.-P. Leung, W.-K. Chiu, K.-H. Chong and C. W. Mak, Chem.
Commun., 2009, 6822; (f) S. Nagendran, S. S. Sen, H. W. Roesky,
C(1)–Ge(1)–N(1)
81.96(7),
N(4)–Mg(1)–N(3)
94.65(6),
Ge(1)–N(2)–Mg(1) 106.82(7).
DFT analyses (RI-BP86/def2-TZVPP/def2-SVP) of 7 and 8
in the gas phase led to optimised geometries for both molecules
that are in good agreement with their solid state structures
(see Supplementary Information for full detailsz), though the
calculated Sn-Sn distance of 7 (3.225 A) was over-estimated by
ca. 5%. The electronic structure of both molecules was examined,
and that for 8 revealed no significant bonding interaction
between its Ge and Mg centres. In the case of 7, its HOMO
almost exclusively comprises its Sn–Sn s-bond which is of very
high p-character (94.0%), whilst the highest energy orbital
displaying significant Sn-lone pair character is the HOMOꢀ11
(see Fig. 3). The LUMO+2 and LUMO+3 of 7 possess Sn
p-orbital character, which is associated with a single tin centre in
each case. The bond dissociation energy (BDE) of 7 (yielding two
[(ButMesNacnac)Sn:]ꢂ fragments in an electronic doublet state)
was calculated at 11.9 kcal molꢀ1, i.e. considerably lower than
that for 1 (E = Sn), 19.9 kcal molꢀ1, which was obtained using a
similar level of theory (RI-BP86/def2-TZVPP).2a It should be
noted, however, that the calculated Sn–Sn bond in 1 (3.111 A) is
shorter than that in 7 in the gas phase by more than 0.1 A. This
could indicate that Sn-Sn BDEs of tin(I) dimers such as 1 and 7
are sensitive to the lengths of those bonds.
D. Koley, H. Grubmuller, A. Pal and R. Herbst-Irmer, Organo-
¨
metallics, 2008, 27, 5459; (g) R. Jambor, B. Kasna,
K. N. Kirschner, M. Schurmann and K. Jurkschat, Angew. Chem.,
¨
Int. Ed., 2008, 47, 1650; (h) S. P. Green, C. Jones, P. C. Junk,
K. A. Lippert and A. Stasch, Chem. Commun., 2006, 3978;
(i) S.-P. Chia, H.-X. Yeong and C.-W. So, Inorg. Chem., 2012,
51, 1002.
3 Reviews: (a) S. S. Sen, S. Khan, P. P. Samuel and H. W. Roesky,
Chem. Sci., 2012, DOI: 10.1039/C1SC00757B, advance article
published online; (b) S. Yao, Y. Xiong and M. Driess, Organometallics,
2011, 30, 1748.
4 (a) S. P. Green, C. Jones and A. Stasch, Science, 2007, 318, 1754;
(b) S. J. Bonyhady, C. Jones, S. Nembenna, A. Stasch,
A. J. Edwards and G. J. McIntyre, Chem.–Eur. J., 2010, 16, 938;
(c) Review: A. Stasch and C. Jones, Dalton Trans., 2011, 40, 5659.
5 Reviews: (a) M. Asay, C. Jones and M. Driess, Chem. Rev., 2011,
111, 354; (b) L. Bourget-Merle, M. F. Lappert and J. R. Severin,
Chem. Rev., 2002, 102, 3031.
6 N. B. Unsymmetrical Ge–Ge and Ge–Sn dimers incorporating one
b-diketiminate ligand have been reported. W. Wang, S. Inoue,
S. Yao and M. Driess, Chem. Commun., 2009, 2661.
In conclusion, the reductions of the group 14 metal(II)
complexes, [(ButMesNacnac)ECl] (E = Ge, Sn or Pb), with a
7 Y. Ding, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt and
P. P. Power, Organometallics, 2001, 20, 1190.
8 (a) W. D. Woodul, A. F. Richards, A. Stasch, M. Driess and
C. Jones, Organometallics, 2010, 29, 3655; (b) W. Wang, S. Yao,
C. von Wullen and M. Driess, J. Am. Chem. Soc., 2008, 130, 9640.
¨
N.B. For a related system, see ref. 2i.
9 W. D. Woodul, E. Carter, R. Muller, A. F. Richards, A. Stasch,
¨
M. Kaupp, D. M. Murphy, M. Driess and C. Jones, J. Am. Chem.
Soc., 2011, 133, 10074.
10 S. L. Choong, W. D. Woodul, C. Schenk, A. Stasch,
A. F. Richards and C. Jones, Organometallics, 2011, 30, 5543.
11 J. Emsley, The Elements, Clarendon, Oxford, 2nd edn, 1995.
12 (a) Y. Peng, R. C. Fischer, W. A. Merrill, J. Fischer, L. Pu,
B. D. Ellis, J. C. Fettinger, R. H. Herber and P. P. Power, Chem.
Sci., 2010, 1, 461; (b) R. C. Fischer, L. Pu, J. C. Fettinger,
M. A. Brynda and P. P. Power, J. Am. Chem. Soc., 2006,
128, 11366.
Fig. 3 (a) HOMO and (b) HOMOꢀ11 of 7.
2506 Chem. Commun., 2012, 48, 2504–2506
c
This journal is The Royal Society of Chemistry 2012