1260
D. Ramesh et al. / Tetrahedron Letters 53 (2012) 1258–1260
Bhargava, A.; Muller, O.; Lieb, F.; Waldmann, H. J. Am. Chem. Soc. 2002, 124,
13171–13178.
5. Li, D. H.; Zhu, T. J.; Liu, H. B.; Fang, C. Y.; Gu, Q. Q.; Zhu, W. M. Arch. Pharm. Res.
2006, 29, 624–626.
6. Ma, S.; Shi, Z.; Yu, Z. Tetrahedron 1999, 55, 12137–12148.
7. Fragoso-Serrano, M.; Gibbons, S.; Perda-Miranda, R. Planta Med. 2005, 71, 278–
280.
8. Mattinez, M. Las Plantas Medicinales de Mexico; Editorial Botas: Mexico, 1989. p.
508.
9. Malan, K.; Pelissier, Y.; Marion, C.; Blaise, A.; Blessiere, J. Planta Med. 1988, 54,
531–532.
10. Perda-Miranda, R.; Hernandez, L.; Villavicencio, M. J.; Novelo, M.; Ibarra, P. J.
Nat. Prod. 1993, 56, 583–593.
11. (a) Chanti Babu, D.; Selavam, J. J. P.; Reddy, D. K.; Shekhar, V.; Venkateswarlu, Y.
Tetrahedron 2011, 67, 3815–3819; (b) Reddy, D. K.; Shekhar, V.; Prabhakar, P.;
Chanti Babu, D.; Ramesh, D.; Siddhardha, B.; Murthy, U. S. N.; Venkateswarlu, Y.
Bioorg. Med. Chem. Lett. 2011, 21, 997–1000; (c) Ramesh, D.; Rajaram, S.;
Prabhakar, P.; Ramulu, U.; Reddy, D. K. Helv. Chim. Acta 2011, 94, 1226–1233;
(d) Shekhar, V.; Reddy, D. K.; Suresh, V.; Chanti Babu, D.; Venkateswarlu, Y.
Tetrahedron Lett. 2010, 51, 946–948; (e) Rajesh, K.; Suresh, V.; Selvam, J. J. P.;
Rao, C. B.; Venkateswarlu, Y. Synthesis 2010, 8, 1381–1385; (f) Prabhakar, P.;
Rajaram, S.; Reddy, D. K.; Shekhar, V.; Venkateswarlu, Y. Tetrahedron:
Asymmetry 2010, 21, 216–221.
12. (a) Colobert, F.; Genet, J.-P. Tetrahedron Lett. 1985, 26, 2779–2782; (b) Babudri,
F.; Fiandanese, V.; Hasan, O.; Punzi, A.; Naso, F. Tetrahedron 1998, 54, 4327–
4336.
13. (a) Reddy, M. V. R.; Rearick, J. P.; Hoch, N.; Ramachandran, P. V. Org. Lett. 2001,
3, 19–20; (b) Midland, M. M.; McDowell, D. C.; Hatch, R. L.; Tramontano, A. J.
Am. Chem. Soc. 1980, 102, 867–869; (c) Stille, J. K.; Sweet, M. P. Tetrahedron Lett.
1989, 30, 3645–3648.
with a 90% yield. The tert-butyldimethylsilyl ether group in (12)
was removed using TBAF in THF to give secondary alcohol (13) in
a 97% yield, which was acetylated using acetic anhydride in pyri-
dine to afford compound 14 in a 96% yield. The p-methoxybenzyl
group in 14 was removed employing DDQ in DCM/H2O (10:1) to
give primary alcohol 15 in a 95% yield. The alcohol (15) was oxi-
dized with Dess–Martin periodinane (DMP) in DCM to afford alde-
hyde, which was further subjected to Z-selective Still–Gennari
olefination17 by employing bis((2,2,2-trifluoroethyl)(methoxycar-
bonylmethyl phosphonate)), 18-crown ether, KHMDS in THF to af-
ford cis-olefinic ester (5) in an 86% yield. Deprotection of acetonide
group and lactonization were achieved in one pot using 80% AcOH
to give acetylenic lactone (16) with a 96% yield. Finally, partial
hydrogenation of triple bond in compound 16 over Lindlar’s cata-
lyst furnished the target natural product, pectinolide H (1) in an
88% yield (Scheme 2). The spectral data18 and optical rotation
{½a 2D5
ꢀ43.7 (c 0.18, CHCl3)} of synthetic pectinolide H (1) were
ꢁ
in good agreement with the reported data of the natural product.7
In conclusion we have reported a simple and efficient approach
for the total synthesis of pectinolide H (1) in a stereoselective man-
ner. This protocol involves the use of enantioselective Midland’s
asymmetric reduction, Sonogashira cross coupling, Sharpless
dihydroxylation, Z-selective Still–Gennari olefination, one pot ace-
tonide deprotection–lactonization, and Lindlar’s reaction as key
steps.
14. Rossi, R.; Bellina, F.; Catanese, A.; Manninab, L.; Valensinc, D. Tetrahedron 2000,
56, 479–487.
15. (a) Vaz, B.; Pereira, R.; Perez, M.; Alvarez, R.; de Lera, A. R. J. Org. Chem. 2008, 73,
6534–6541; (b) Andreini, B. P.; Carpita, A.; Rossi, R.; Scamuzzi, B. Tetrahedron
1989, 45, 5621–5640; (c) Hulot, C.; Amiri, S.; Blond, G.; Schreiner, P. R.; Suffert,
J. J. Am. Chem. Soc. 2009, 131, 13387–13398.
Acknowledgments
16. (a) Caddick, S.; Shanmugathasan, S.; Brasseur, D.; Delisser, V. M. Tetrahedron
Lett. 1997, 38, 5735–5736; (b) Somfai, P.; Marchand, P.; Torsell, S.; Lindstrom,
U. M. Tetrahedron 2003, 59, 1293–1299.
The authors DR, VS, DCB, SR and UR are thankful to CSIR, New
Delhi, for the financial support and to Director IICT for constant
encouragement.
17. (a) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405–4408; (b) Horita, K.;
Sakurai, Y.; Nagasawa, M.; Yonemitsu, O. Chem. Pharm. Bull. 1997, 45, 1558–
1572; (c) Krishna, P. R.; Reddy, P. S. Tetrahedron 2007, 63, 3995–3999.
18. Spectral data for selected compounds:
References and notes
Compound 6: ½a 2D5
ꢁ
ꢀ40.4 (c 2.1, CHCl3); IR (neat): 3413, 2932, 2860, 1613,
1249, 1083, 838, 777 cmꢀ1
;
1H NMR (300 MHz, CDCl3): d = 7.21 (d, 2H,
1. (a) Rao, Y. S. Chem. Rev. 1976, 76, 625–627; (b) Fukusaki, E.; Senda, S.;
Nakazono, Y.; Omata, T. Tetrahedron 1991, 47, 6223–6230; (c) Mori, K.
Tetrahedron 1989, 45, 3233–3298; (d) Wheeler, J. W.; Happ, G. M.; Araujo, J.;
Pasteels, J. M. Tetrahedron Lett. 1972, 13, 4635–4638; (e) Bloch, R.; Gilbert, L. J.
Org. Chem. 1987, 52, 4603–4605.
2. (a) Gunasekera, S. P.; Mc Carthy, P. J.; Kelly-Borges, M.; Lobkovsky, E.; Clardy, J.
J. Am. Chem. Soc. 1996, 118, 8759–8760; (b) Avcibasi, H.; Anil, H. Phytochemistry
1987, 26, 2852–2854; (c) Miles, D. H.; Chittawong, V.; Lho, D.-S.; Payne, A.-M.;
de La Cruz, A. A.; Gomez, E. D.; Weeks, J. A.; Atwood, J. L. J. Nat. Prod. 1991, 54,
286–289; (d) Hoffmann, H. M. R.; Rabe, J. Angew. Chem. Int. Ed. Engl. 1985, 24,
94–110; (e) Boukoulas, J.; McCann, L. C. Tetrahedron Lett. 2011, 52, 1202–1204.
3. (a) Hentzer, M.; Eberl, L.; Nielsen, J.; Giviskov, M. Biodrugs 2003, 17, 241–250;
(b) Hjelmgaard, T.; Persson, T.; Rasmussen, T. B.; Givskov, M.; Nielsen, J. Bioorg.
Med. Chem. 2003, 11, 3261–3271; (c) Fusetani, N. Nat. Prod. Rep. 2004, 21, 94–
104.
J = 8.3 Hz), 6.84 (d, 2H, J = 8.3 Hz), 4.47 (s, 2H), 4.39–4.30 (m, 2H), 3.79 (s, 3H),
3.78–3.72 (m, 1H) 3.67–3.50 (m, 2H), 2.62 (br s, 2H), 1.69–1.56 (m, 2H), 1.44–
1.26 (m, 4H), 0.91 (t, 3H, J = 6.8 Hz), 0.89 (s, 9H), 0.09 (d, 6H, J = 6.0 Hz); 13C
NMR (75 MHz, CDCl3): d = 159.2, 129.6, 129.3, 113.7, 88.0, 81.4, 73.3, 73.1, 70.2,
63.5, 62.7, 55.1, 38.1, 27.2, 25.6, 22.2, 18.1, 13.9, -4.6, -5.1; HRMS (ESI): calcd
for C24H40O5NaSi [M+Na]+ 459.2537; found 459.2523; Compound 5: ½a 2D5
ꢁ
ꢀ44.3
(c 1.2, CHCl3); IR (neat): 2956, 2867, 1731, 1374, 1230, 1054 cmꢀ1
;
1H NMR
(300 MHz, CDCl3): d = 6.18–6.08 (m, 1H), 5.95 (d, 1H, J = 11.3 Hz), 5.65 (t, 1H,
J = 6.8 Hz), 5.39 (t, 1H, J = 6.8 Hz), 4.42 (d, 1H, J = 6.0 Hz), 3.76 (s, 3H), 2.07 (s,
3H), 1.81–1.71 (m, 2H), 1.55–1.24 (m, 10H), 0.91 (t, 3H, J = 6.8 Hz); 13C NMR
(75 MHz, CDCl3): d = 169.8, 165.4, 144.3, 123.3, 111.4, 84.1, 81.6, 77.1, 70.8,
63.8, 51.5, 34.2, 27.2, 26.9, 26.4, 22.1, 20.9, 13.8; HRMS (ESI): calcd. for
C
18H26O6Na [M + Na]+ 361.1621; found 361.1617; Compound 1: ½a 2D5
ꢁ
ꢀ43.7 (c
0.18, CHCl3); IR (neat): 3444, 2924, 2855, 1752, 1243, 1044 cmꢀ1
;
1H NMR
(300 MHz, CDCl3): d = 7.55 (dd, 1H, J = 6.1, 1.8 Hz), 6.22 (dd, 1H, J = 6.1, 1.8 Hz),
5.56–5.33 (m, 3H), 5.16 (dt, 1H, J = 6.1, 1.8 Hz), 4.96 (dd, 1H, J = 7.8, 6.1 Hz),
3.70 (d, 1H, J = 3.8 Hz), 2.05 (s, 3H), 1.79-1.48 (m, 2H), 1.44–1.18 (m, 4H), 0.92
(t, 3H, J = 7.0 Hz); 13C NMR (75 MHz, CDCl3): d = 172.5, 171.8, 153.3, 133.1,
129.3, 123.2, 84.1, 71.0, 67.1, 33.6, 27.1, 22.4, 21.3, 13.9; HRMS (ESI): calcd for
4. (a) Cateni, F.; Zillic, J.; Zacchigna, M.; Bonivento, P.; Frausin, F.; Carcia, V. Eur. J.
Med. Chem. 2006, 41, 192–200; (b) Marcos, I. S.; Escola, M. A.; Moro, R. F.;
Basabe, P.; Diez, D.; Sanz, F.; Mollinedo, F.; dela Iglesia-Vicente, J.; Sierrac, B. G.;
Urones, J. G. Bioorg. Med. Chem. 2007, 15, 5719–5737; (c) Takahashi, M.; Dodo,
K.; Sugimoto, Y.; Aoyagi, Y.; Yamada, Y.; Hashimoto, Y.; Shirai, R. Bioorg. Med.
Chem. Lett. 2000, 10, 2571–2574; (d) Brohm, D.; Philippe, N.; Metzger, S.;
C
14H20O5Na [M+Na]+ 291.1202; found 291.1200.