1526
W.-J. Shan et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1523–1526
Table 2
Acknowledgment
Inhibition of cAMP hydrolysis by recombinant human PDE4B2 in the presence of 15
and new compoundsa
We thank the Natural Science Foundation of China (20972198)
and State Key Laboratory of Respiratory Diseases (2007DA-
80154F1110) for financial support of this study.
Compounds
n
PDE4B2 inhibition IC50 (lM)
(R)-Rolipram
15
28
29
(R)-29
(S)-29
30
—
—
2
4
4
4
5
6
—
—
0.500 0.028
0.520 0.042
0.280 0.021
0.278 0.013
0.265 0.009
0.284 0.016
0.257 0.020
0.251 0.015
0.120 (0.095b)
0.001 (0.0008c)
Supplementary data
Supplementary data associated with this article can be found, in
31
Cilomilast
Rofiumilast
References and notes
a
b
c
Data are of average of three determinations SEM.
Ref. 24
Ref. 25
1. Barnes, P. J. Nat. Rev. Immunol. 2008, 8, 183.
2. Barnes, P. J. J. Allergy Clin. Immunol. 1998, 102, 531.
3. Boushey, H. A. J. Allergy Clin. Immunol. 1998, 102, 5.
4. Kotlikof, M. I. Ann. Rev. Physiol. 1996, 58, 115.
5. Bender, A. T.; Beavo, J. A. Pharmacol. Rev. 2006, 58, 488.
ucm261649.htm.
antagonist effects. The pA2 value for the antagonist activity of ICI-
118551 in the presence of (R)-29 was 9.15.
7. Lugnier, C. Pharmacol. Ther. 2006, 109, 366.
Compound 15 and rolipram, the known PDE4 inhibitors, are
used as standard (Table 2). Compounds 28–31 were also tested
for inhibition of cAMP hydrolysis by recombinant human PDE4B2
in vitro, using a colorimetric assay method from Biomol (Enzo Life
Science), following the protocol described by the manufacturer.23
The results outlined in Table 2 indicate that all target compounds
provided excellent PDE4B2 inhibitory activity (Table 2, compounds
15, 28, 29, 30, and 31 gave the IC50 value of 0.520, 0.280, 0.278,
8. Halene, T. B.; Siegel, S. J. Drug Discovery Today 2007, 12, 870.
9. Houslay, M. D.; Shafer, P.; Zhang, K. Y. Drug Discovery Today 2005, 10, 1503.
10. Yuasa, K.; Kanoh, Y.; Okumura, K.; Omori, K. Eur. J. Biochem. 2001, 268, 168.
11. Fan, Chung. K. Eur. J. Pharmacol. 2006, 533, 110.
12. Jin, S.-L. C.; Conti, M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 7628.
13. Keller, T. H.; Bray-French, K.; Demnitz, F. W. J.; Müller, T.; Pombo-Villar, E.;
Walker, C. Chem. Pharm. Bull. 2001, 49, 1009.
14. Provins, L.; Christophe, B.; Danhaive, P.; Dulieu, J.; Durieu, V.; Gillard, M.;
Lebon, F.; Lengelé, S.; Quéré, L.; van Keulen, B. Bioorg. Med. Chem. Lett. 1834,
2006, 16.
15. Cashman, J. R.; Voelker, T.; Zhang, H.-T.; O’Donnell, J. M. J. Med. Chem. 2009, 52,
1530.
0.257 and 0.251 lM, respectively). A simple structure–activity
relationship analysis showed that the PDE4B2 inhibitory potency
is closely related to the length of the alkylene chain. Compound
31, with six methylene groups between the b2-adrenoceptor ago-
nist moiety and phthalazinone, provided the greatest inhibitory
potency in the series. The higher potency of compounds 28–31
compared with lead compound 15 suggests that N-substitution is
favorable for the inhibition of human PDE4B2. As reported in liter-
ature,26 cis-15 is more potent than its trans-isomer for the inhibi-
tion of PDE4. For searching more potent agents for treatment
asthma and COPD, the study of the different diastereomers of these
dual b2-adrenoceptor agonists-PDE4 inhibitors is in progress in our
group.
In conclusion, we have presented the design, synthesis and
evaluation of a series of dual functional molecules that behave as
b2-adrenoceptor agonists and PDE4 inhibitors for the first time.
The compounds displayed moderate to high b2-adrenoceptor ago-
nist activities on isolated guinea pig tracheal rings precontracted
by histamine. Among them, compound (R)-29 exhibited the most
potent agonist activity, with a pEC50 value of up to 10.0. Moreover,
the results showed that N-substitution of the phthalazinone re-
sulted in a significant increase in the PDE4B2 inhibitory potency.
16. Hughes, A. D.; Chin, K. H.; Dunham, S. L.; Jasper, J. R.; King, K. E.; Lee, T. W.;
Mammen, M.; Martin, J.; Steinfeld, T. Bioorg. Med. Chem. Lett. 2011, 21, 1354.
17. Huang, L.; Liu, J.; Shan, W.; Liu, B.; Shi, A.; Li, X. Chirality 2010, 22, 206.
18. Van der Mey, M.; Hatzelmann, A.; Van Klink, G. P.; Van der Laan, I. J.; Sterk, G. J.;
Thibaut, U.; Ulrich, W. R.; Timmerman, H. J. Med. Chem. 2001, 44, 2523.
19. Van der Mey, M.; Boss, H.; Couwenberg, D.; Hatzelmann, A.; Sterk, G. J.;
Goubitz, K.; Schenk, H.; Timmerman, H. J. Med. Chem. 2002, 45, 2526.
20. Soriano-Ursúa, M. A.; Correa-Basurto, J.; Valencia-Hernández, I.; Amezcua-
Gutiérrez, M. A.; Padilla-Martínez, I. I.; Trujillo-Ferrara, J. G. Bioorg. Med. Chem.
Lett. 2010, 20, 5623.
21. Procopiou, P. A.; Barrett, V. J.; Bevan, N. J.; Biggadike, K.; Butchers, P. R.; Coe, D.
M.; Conroy, R.; Edney, D. D.; Field, R. N.; Ford, A. J.; Guntrip, S. B.; Looker, B. E.;
McLay, I. M.; Monteith, M. J.; Morrison, V. S.; Mutch, P. J.; Richards, S. A.; Sasse,
R.; Smith, C. E. J. Med. Chem. 2009, 52, 2280.
22. Bilski, A. J.; Halliday, S. E.; Fitzgerald, J. D.; Wale, J. L. J. Cardiovasc. Pharmacol.
1983, 5, 430.
23. Cyclic nucleotide phosphodiesterase assay kit: AK-800.
24. Christensen, S. B.; Guider, A.; Forster, C. J.; Gleason, J. G.; Bender, P. E.;
Karpinski, J. M.; DeWolf, W. E.; Barnette, M. S.; Underwood, D. C.; Griswold, D.
E.; Cieslinski, L. B.; Burman, M.; Bochnowicz, S.; Osborn, R. R.; Manning, C. D.;
Grous, M.; Hillegas, L. M.; Bartus, J. O. L.; Ryan, M. D.; Eggleston, D. S.;
Haltiwanger, R. C.; Torphy, T. J. J. Med. Chem. 1998, 41, 821.
25. Hatzelmann, A.; Schudt, C. J. Pharmacol. Exp. Ther. 2001, 297, 267.
26. Van der Mey, M.; Hatzelmann, A.; Van der Laan, I. J.; Sterk, G. J.; Thibaut, U.;
Timmerman, H. J. Med. Chem. 2001, 44, 2511.