This work was financially supported by the EC Marie-Curie
ITN-SUPERIOR (PITN-GA-2009-238177), FP7 ONE-P large-
scale project no. 212311, the NanoSci-E+ project SENSORS, the
International Center for Frontier Research in Chemistry (FRC),
and the Fonds der chemischen Industrie. T.E.M. acknowledges
the Egyptian Government for providing a doctoral fellowship.
The authors thank Wacker AG, BASF AG, Bayer Industry
Services, and Sasol Germany for generous donations of chemicals.
Notes and references
1 For selected reviews: (a) S. De Feyter and F. C. De Schryver,
Chem. Soc. Rev., 2003, 32, 139–150; J. V. Barth, J. Costantini and
K. Kern, Nature, 2005, 437, 671–679; (b) J. A. A. W. Elemans,
S. Lei and S. De Feyter, Angew. Chem., Int. Ed., 2009, 48,
7298–7332; (c) D. Bonifazi, S. Mohnani and A. Llanes-Pallas,
Chem.–Eur. J., 2009, 15, 7004–7025; (d) C. -A. Palma, M. Bonini,
T. Breiner and P. Samorı, Adv. Mater., 2009, 21, 1383–1386;
(e) A. Ciesielski, C.-A. Palma, M. Bonini and P. Samorı, Adv.
Mater., 2010, 22, 3506–3520.
2 For selected reviews: (a) T. Kudernac, S. Lei, J. A. A. W. Elemans
and S. De Feyter, Chem. Soc. Rev., 2009, 38, 722–736; (b) J. A. A.
W. Elemans, R. Van Hameren, R. J. M. Nolte and A. E. Rowan,
Adv. Mater., 2006, 18, 1251–1266.
3 For selected reviews: (a) S. A. DiBenedetto, A. Facchetti,
M. A. Ratner and T. J. Marks, Adv. Mater., 2009, 21,
1407–1433; (b) A. P. Schenning and E. W. Meijer, Chem. Commun.,
2005, 3245–3258.
4 For selected reviews: (a) G. R. Desiraju, Acc. Chem. Res., 2002, 35,
565–573; (b) K. Tahara, S. Lei, J. Adisoejoso, S. De Feyter and
Y. Tobe, Chem. Commun., 2010, 46, 8507–8525; (c) O. Ivasenko
and D. F. Perepichka, Chem. Soc. Rev., 2011, 40, 191–206.
5 For selected reviews: (a) F. Zeng and S. C. Zimmerman, Chem.
Rev., 1997, 97, 1681–1712; (b) B. M. Rosen, C. J. Wilson,
D. A. Wilson, M. Peterca, M. R. Imam and V. Percec, Chem.
Rev., 2009, 109, 6275–6540.
6 At the liquid–solid interface, primarily dendrons have been investigated.
For an exception describing the 2D self-assembly of a flexible
poly(benzyl ether) dendrimer on HOPG, see: I. Widmer, U. Hubler,
M. Stohr, L. Merz, H.-J. Guntherodt, B. A. Hermann, P. Samorı and
J. P. Rabe, Helv. Chim. Acta, 2002, 85, 4255–4263.
7 W. S. Li, K. S. Kim, D. L. Jiang, H. Tanaka, T. Kawai,
J. H. Kwon, D. Kim and T. Aida, J. Am. Chem. Soc., 2006, 128,
10527–10532.
8 (a) C. J. Fleming, Y. X. Liu, Z. Deng and G. Y. Liu, J. Phys. Chem.
A, 2009, 113, 4168–4174; (b) C. J. Fleming, N. N. Yin, S. L. Riechers,
G. Chu and G. Y. Liu, ACS Nano, 2011, 5, 1685–1692.
9 (a) L. Latterini, G. Pourtois, C. Moucheron, R. Lazzaroni,
J.-L. Bredas, A. Kirsch-De Mesmaeker and F. C. De Schryver,
Chem.–Eur. J., 2000, 6, 1331–1336; (b) H. D. Abruna, D. J. Diaz,
G. D. Storrier, S. Bernhard and K. Takada, Langmuir, 1999, 15,
7351–7354.
Fig. 3 STM current images of (a, b) 3, (c) 4 and (d) 5 recorded at the
solid–liquid interface. Unit cell parameters: (b) a = (3.68 ꢁ 0.2) nm, b =
(3.70 ꢁ 0.2) nm, a = (58 ꢁ 3)1, A = (11.58 ꢁ 0.67) nm2, Amol = (5.76 ꢁ
0.33) nm2, space group p6m. Tunneling parameters (a, b): It = 15 pA, Vt =
900 mV; (c) It = 15 pA, Vt = 860 mV; (d) It = 15 pA, Vt = 860 mV.
highly concentrated solutions (c = 2 mM). In strong contrast
to compound 3, its meta- and para-regioisomers 4 and 5,
respectively, form only unstable and poorly ordered lamellar
structures on HOPG, highlighting the high molecular mobility
on a timescale faster than the tip scan, thereby hindering high
resolution STM mapping. The interlamellar distances for the
assembly of molecules 4 and 5 amount to (2.98 ꢁ 0.18) nm and
(2.75 ꢁ 0.33) nm, respectively, providing evidence for a tight
molecular packing probably caused by interdigitation of alkyl
side chains belonging to molecules of adjacent lamellae.
In summary, we have performed a comparative STM study of
the self-assembly of various derivatives of the first generation of
new poly(triazole-phenylene) dendrimers at the HOPG–solution
interface. All molecules were found to physisorb in a flat
adsorption geometry on graphite forming 2D supramolecular
structures. Different crystalline nanopatterns were observed,
ranging from honeycomb-like networks for compounds 1 and 3
to various lamellar structures of different stability in the case of
derivatives 2, 4, and 5. Our results provide unambiguous evidence
that subtle modification in the substitution pattern of the TPTB
scaffold leads to pronounced effects on its 2D self-assembly at the
liquid–solid interface. Two factors seem to be responsible for
the variation in the observed structures and their stability: (i) due
to the presence of the triazole moieties, the TPTB core cannot
completely match the six-fold symmetry of the HOPG substrate,
i.e. both lattices are not commensurate, and thereby gives rise to an
inherent flexibility and thermodynamic instability, and (ii) as a
consequence the exact presentation of the alkyl side chains by the
TPTB scaffold governs the overall structure formation in the self-
assembly process. In general, the capacity of flat dendrimers to
pack into highly ordered supramolecular structures at the solid–li-
quid interface described herein could lead to the design of more
complex and multicomponent structures based on dendritic cores.5
10 The synthesis of related higher generation dendrimers will be
published separately.
11 (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless,
Angew. Chem., Int. Ed., 2002, 41, 2596–2599; (b) C. W. Tornøe,
C. Christensen and M. Meldal, J. Org. Chem., 2002, 67, 3057–3064.
For a recent comprehensive review, see: (c) M. Meldal and
C. W. Tornøe, Chem. Rev., 2008, 108, 2952–3015.
12 We have been exploring the 1,2,3-triazole moiety as a structure-
directing motif in a variety of systems: (a) R. M. Meudtner,
M. Ostermeier, R. Goddard, C. Limberg and S. Hecht,
Chem.–Eur. J., 2007, 13, 9834–9840; (b) R. M. Meudtner and
S. Hecht, Angew. Chem., Int. Ed., 2008, 47, 4926–4930;
(c) R. M. Meudtner and S. Hecht, Macromol. Rapid Commun.,
2008, 29, 347–351; (d) L. Piot, R. M. Meudtner, T. El Malah,
S. Hecht and P. Samorı, Chem.–Eur. J., 2009, 15, 4788–4792;
(e) S. Hartwig and S. Hecht, Macromolecules, 2010, 43, 242–248;
(f) M. Ostermeier, M.-A. Berlin, R. Meudtner, S. Demeshko,
F. Meyer, C. Limberg and S. Hecht, Chem.–Eur. J., 2010, 16,
10202–10213; (g) D. Zornik, R. M. Meudtner, T. El Malah,
C. M. Thiele and S. Hecht, Chem.–Eur. J., 2011, 17, 1473–1484.
c
10580 Chem. Commun., 2011, 47, 10578–10580
This journal is The Royal Society of Chemistry 2011