Journal of the American Chemical Society
Communication
S.; Hattori, G.; Narasaka, K. Chem. Lett. 2007, 36, 52. (c) Stokes, B. J.;
Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem. Soc.
2007, 129, 7500. (d) Jana, S.; Clements, M. D.; Sharp, B. K.; Zheng, N.
Org. Lett. 2010, 12, 3736.
To conclude, we outline a conceptually simple, but highly
unusual method for achieving C−N bond forming dearomatiza-
tions and aryl C−H aminations. Upon treatment with acid, and
under metal free conditions, a potent electrophilic aminating
agent is generated, and this interacts efficiently with pendant
arenes in a process that resembles an SEAr amination. Although
C−C bond forming dearomatizations triggered byintramolecular
attack of phenols onto primary C(sp3)-sulfonates were first
reported 60 years ago,18 the studies described here are the first
aza-variants of this process. The method represents a step change
in efficiency vs conventional nitrenium ion mediated processes,
suggesting that a diverse range of new C−N bond formations
might be achievable by exploiting the untapped potential of
electrophilic intermediates related to 6.
(4) Intramolecular aryl C−H aminations can also be achieved under
oxidative (oftenmetal-catalyzed) conditions to provide specific classes of
heterocycles. Selected examples: (a) Tsang, W. C. P.; Zheng, N.;
Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560. (b) Inamoto, K.;
Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org. Lett. 2007, 9, 2931.
(c) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932.
(d) Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.;
Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 16184. (e) Inamoto, K.; Saito,
T.; Hiroya, K.; Doi, T. J. Org. Chem. 2010, 75, 3900. (f) He, G.; Zhao, Y.;
Zhang, S.;Lu, C.;Chen, G. J. Am. Chem. Soc. 2012, 134, 3. (g)Takamatsu,
K.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2015, 80, 3242.
(h) Clagg, K.; Hou, H.; Weinstein, A. B.; Russell, D.; Stahl, S. S.; Koenig,
S. G. Org. Lett. 2016, 18, 3586.
(5) For a recent review on metal-catalyzed aryl C−H amination: Jiao, J.;
Murakami, K.; Itami, K. ACS Catal. 2016, 6, 610.
(6) Intramolecular indole dearomatizations using O-sulfonyl oximes:
Tanaka, K.; Mori, Y.; Narasaka, K. Chem. Lett. 2004, 33, 26.
(7) See: Race, N. J.; Hazelden, I. R.; Faulkner, A.; Bower, J. F. Chem. Sci.
2017, 8, 5248 and references cited therein.
(8) Existing C−N bond forming dearomatizations of phenols involve
oxidation of the arene to a carbocation in advance of trapping by an NH-
nucleophile. Thisnecessitatesspecificprotectinggroupsonnitrogen, and
oxidatively sensitive functionality can compromise reaction efficiency.
Leading references: (a) Braun, N. A.; Ousmer, M.; Bray, J. D.; Bouchu,
D.; Peters, K.;Peters, E.-M.; Ciufolini, M. A. J. Org. Chem. 2000, 65, 4397.
(b) Canesi, S.; Belmont, P.; Bouchu, D.; Rousset, L.; Ciufolini, M. A.
Tetrahedron Lett. 2002, 43, 5193. (c) Liang, H.; Ciufolini, M. A. Chem. -
Eur. J. 2010, 16, 13262. (d) Liang, H.; Ciufolini, M. A. Tetrahedron 2010,
66, 5884. In certain settings, secondary amines have been used as the
nucleophile: (e) Scheffler, G.; Seike, H.; Sorensen, E. J. Angew. Chem., Int.
Ed. 2000, 39, 4593. (f) Mizutani, H.; Takayama, J.; Soeda, Y.; Honda, T.
Tetrahedron Lett. 2002, 43, 2411.
ASSOCIATED CONTENT
* Supporting Information
TheSupportingInformationisavailablefreeofchargeontheACS
■
S
Experimental details, characterization data and crystallo-
AUTHOR INFORMATION
Corresponding Author
■
ORCID
(9) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752.
(10) Other solvents were less efficient. For example, PhMe or CH2Cl2
provided 7a in 40% and 41% yield, respectively. 7a was not formed using
MeOH, THF, EtOAc, or dioxane as solvent.
(11) Higher reaction temperatures provide faster conversion of starting
material but lower yields of the dearomatization products. So far, we have
been unable to extend the method to the synthesis of spirocyclic
piperidines.
(12) (a) Dienone-phenol rearrangement: Arnold, R. T.; Buckley, J. S.;
Richter, J. J. Am. Chem. Soc. 1947, 69, 2322. (b) A similar aza-variant has
beeninvokedbutnotconfirmed:Kawase, M.;Kikugawa, Y. Chem.Pharm.
Bull. 1981, 29, 1615.
(13)Thefreebaseof7gwasheatedat60°CinTFEand8gwasobtained
in 57% yield after 25 h. 8g was obtained in 50% yield (+26% recovered
7g) using 15 mol% TFA in TFE at r.t. (48 h).
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
WethanktheBristolChemicalSynthesisCDT,fundedbyEPSRC
(EP/G036764/1) for a studentship (J.J.F.), the Royal Society for
a URF (J.F.B.) and the European Research Council for financial
support (ERC grant 639594 CatHet).
REFERENCES
■
(1) Examples of aryl C−H amination and aryl dearomatization via
nitrenium ions: (a) Glover, S. A.; Goosen, A.; McCleland, C. W.;
Schoonraad, J. L. J. Chem. Soc., Perkin Trans. 1 1984, 2255. (b) Kikugawa,
Y.; Kawase, M. J. Am. Chem. Soc. 1984, 106, 5728. (c) Glover, S. A.;
Goosen, A.; McClei, C. V.; Schoonraad, J. L. Tetrahedron 1987, 43, 2577.
(d) Kawase, M.; Kitamura, T.; Kikugawa, Y. J. Org. Chem. 1989, 54, 3394.
Stabilizing substituents other than N-alkoxy groups can be used, and
(OC)NH(OR) precursors can be used under oxidative conditions. For
example, see: (e) Kikugawa, Y.; Kawase, M. Chem. Lett. 1990, 19, 581.
(f) Kikugawa, Y.; Nagashima, A.; Sakamoto, T.; Miyazawa, E.; Shiiya, M.
J. Org. Chem. 2003, 68, 6739. (g) Miyazawa, E.; Sakamoto, T.; Kikugawa,
Y. Heterocycles 2003, 59, 149. (h) Liang, D.; Yu, W.; Nguyen, N.;
Deschamps, J. R.; Imler, G. H.; Li, Y.; MacKerell, A. D., Jr.; Jiang, C.; Xue,
F. J. Org. Chem. 2017, 82, 3589.
(14) Marx, J. N.; Argyle, J. C.; Norman, L. R. J. Am. Chem. Soc. 1974, 96,
2121.
(15) A full study on the metal free C−H amination protocol will be
reported in due course. Metal free intramolecular aryl C−H aminations
using primary hydroxylamine derivatives have been reported previously,
but forcing conditions were required (see ref 12b).
(16) Stella, L. Angew. Chem., Int. Ed. Engl. 1983, 22, 337 Conventionally,
aminyl radicals are generated from N-chloroamines under either
photochemical or strongly acidic conditions. In general, primary N-
chloroamines, and therefore primary aminyl radicals, are difficult to
access because polychlorination of the amine precursor is problematic.
(17) Full details are given in the SI. The reaction is unaffected by the
presence or absence of light, and very similar results are obtained using
distilled or nondistilled TFA/TFE.
(2)ExamplesofredoxneutralintramoleculararylC−Haminationusing
electrophilic nitrogen sources: (a) Cherest, M.; Lusinchi, X. Tetrahedron
Lett. 1989, 30, 715. (b) Tan, Y. T.; Hartwig, J. F. J. Am. Chem. Soc. 2010,
132, 3676. (c) An, X.-D.; Yu, S. Org. Lett. 2015, 17, 2692. (d) Paudyal, M.
(18) (a) Winstein, S.; Baird, R. J. Am. Chem. Soc. 1957, 79, 756.
(b) Masamune, S. J. Am. Chem. Soc. 1961, 83, 1009.
P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.; Kurti, L.; Falck, J. R.
̈
Science 2016, 353, 1144. (e) Walton, J. C. Acc. Chem. Res. 2014, 47, 1406.
(3) Examples of intramolecular aryl C−H amination using nitrenes:
(a) Taber, D. F.; Tian, W. J. Am. Chem. Soc. 2006, 128, 1058. (b) Chiba,
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX