2124
N. K. Rana et al. / Tetrahedron Letters 53 (2012) 2121–2124
O
References and notes
OH
O
NaBH4, MeOH,
0 °C, 2 h
O
O
ref. 3c
1. (a) Trost, B. M.; Keeley, D. E. J. Org. Chem. 1975, 40, 2013; (b) Hall, I. H.; Lee, K.-
H.; Mar, E. C.; Starnes, C. O.; Waddell, T. G. J. Med. Chem. 1977, 20, 333; (c)
Nudelman, A. The Chemistry of Optically Active Sulfur Compounds; Gordon and
Breach: New York, 1984.
2. For review see: (a) Enders, D.; Lüttgen, K.; Narine, A. A. Synthesis 2007, 959; (b)
Clayden, J.; MacLellan, P. Beilstein J. Org. Chem. 2011, 7, 582.
S
Ph
S
CH3
S
R
4a:
ee = 64%
14:
dr = 1.4:1; ee = 80%
yield = 95%
4b-(S):
ee = 82%
3. (a) Rana, N. K.; Singh, V. K. Org. Lett. 2011, 13, 6520; (b) Tsai, W.-J.; Lin, Y.-T.;
Uanga, B.-J. Tetrahedron: Asymmetry 1994, 5, 1195; (c) Emori, E.; Arai, T.; Sasai,
H.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 4043; (d) Nishimura, K.; Ono, M.;
Nagaoka, Y.; Tomioka, K. Angew. Chem., Int. Ed. 2001, 40, 440; (e) Henze, R.;
Duhamel, L.; Lasne, M.-C. Tetrahedron: Asymmetry 1997, 8, 3363; (f) Kumar, A.;
Salunkhe, R. V.; Rane, R. A.; Dike, S. Y. J. Chem. Soc., Chem. Commun. 1991, 485;
(g) Li, B.-J.; Jiang, L.; Liu, M.; Chen, Y.-C.; Ding, L.-S.; Wu, Y. Synlett 2005, 603;
(h) Leow, D.; Lin, S.; Chittimalla, S. K.; Fu, X.; Tan, C.-H. Angew. Chem., Int. Ed.
2008, 47, 5641; For review on enantioselective protonations, see: (i) Mohr, J. T.;
Hong, A. Y.; Stoltz, B. M. Nat. Chem. 2009, 1, 369.
4. For recent example, see: (a) Wang, J.; Xie, H.; Li, H.; Zu, L.; Wang, W. Angew.
Chem., Int. Ed. 2008, 47, 4177; (b) Tang, J.; Xu, D. Q.; Xia, A. B.; Wang, Y. F.; Jiang,
J. R.; Luo, S. P.; Xu, Z. Y. Adv. Synth. Catal. 2010, 352, 2121; (c) Wang, W.; Li, H.;
Wang, J.; Zu, L. J. Am. Chem. Soc. 2006, 128, 10354; (d) Zu, L.; Wang, J.; Li, H.; Xie,
H.; Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036; Tandem thio-
amination reaction, see: (e) Galzerano, P.; Pesciaioli, F.; Mazzanti, A.; Bartoli,
G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7892; (f) Marigo, M.; Schulte,
T.; Franzen, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 15710.
Scheme 1. Synthesis of chiral 3-hydroxyl thioester and thioethers.
N
CF3
O
O
OMe
O
H
N
N
H
N
H
F3C
O
H
(S)
S
R
S
O
Addition to Si face of enone
R
5. For example, see: (a) Dai, L.; Wang, S.-X.; Chen, F.-E. Adv. Synth. Catal. 2010, 352,
2137; (b) McDaid, P.; Chen, Y.; Deng, L. Angew. Chem., Int. Ed. 2002, 41, 338; (c)
Wynberg, H.; Greijdanus, B. J. Chem. Soc., Chem. Commun. 1978, 427; (d)
Kobayashi, N.; Iwai, K. J. Am. Chem. Soc. 1978, 100, 7071; (e) Hiemstra, H.;
Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417; (f) Sera, A.; Takagi, K.; Katayama,
Figure 2. Possible transition state model.
into 1,3-O,S-diacetate.7a In principle, the thioester could also be
transformed into the corresponding thioether.3c
_
H.; Yamada, H. J. Org. Chem. 1988, 53, 1157; (g) Skarzewaski, J.; Zielin´ ska-Blajet,
M.; Turowska-Tyrk, I. Tetrahedron: Asymmetry 2001, 12, 1923; (h)
Sundararajan, G.; Prabagaran, N. Org. Lett. 2001, 3, 389; (i) Nishimura, K.;
Ono, M.; Nagaoka, Y.; Tomioka, K. J. Am. Chem. Soc. 1997, 119, 12974; (j) Saito,
M.; Nakajima, M.; Hashimoto, S. Chem. Commun. 2000, 1851; (k) Saito, M.;
Nakajima, M.; Hashimoto, S. Tetrahedron 2000, 56, 9589; (l) Suzuki, K.; Ikegawa,
A.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1982, 55, 3277; (m) Yamashita, H.;
Mukaiyama, T. Chem. Lett. 1985, 363; (n) Shirakawa, S.; Kimura, T.; Murata, S.;
Shimizu, S. J. Org. Chem. 2009, 74, 1288; (o) Lu, H.-H.; Zhang, F.-G.; Meng, X.-G.;
Duan, S.-W.; Xiao, W.-J. Org. Lett. 2009, 11, 3946; (p) Enders, D.; Hoffman, K.
Eur. J. Org. Chem. 2009, 1165; (q) Kawatsura, M.; Komatsu, Y.; Yamamoto, M.;
Hayase, S.; Itoh, T. Tetrahedron Lett. 2007, 48, 6480; For addition of thiol to N-
acyl imines, see: (r) Ingle, G. K.; Mormino, M. G.; Wojtas, L.; Antilla, J. C. Org.
Lett. 2011, 13, 4822.
A possible transition state model is shown in Figure 2 to explain
the stereochemical outcome of the reaction. We believe that enone
is activated by the urea moiety of the catalyst through double
hydrogen bonding, while the thioacid is activated by the tertiary
nitrogen of the quinuclidine moiety. Michael addition of thioacid
to the Si face of the enone leads to the formation of the major
stereoisomer.
In conclusion, we have developed a catalytic variant of the
asymmetric sulfa-Michael addition of thioacids to a,b-unsaturated
ketones. Quinine derived bifunctional organocatalyst 1a can effi-
ciently catalyze the reaction between thioacids and enones affording
synthetically useful thioesters in excellent yields with moderate to
good enantioselectivities. Both the enantiomers of products have
been achieved with the same level of enantioselectivities by using
two pseudoenantiomeric catalysts. The resulting thioesters have
been converted into the corresponding 3-hydroxy thioester. The
full scope and further control over enantioselectivity of the reac-
tion are currently under investigation in our laboratory.
6. For example, see: (a) Bonollo, S.; Lanari, D.; Pizzo, F.; Vaccaro, L. Org. Lett. 2011,
13, 2150; (b) Liu, Y.; Sun, B.; Wang, B.; Wakem, M.; Deng, L. J. Am. Chem. Soc.
2009, 131, 418; (c) Ricci, P.; Carlone, A.; Bartoli, G.; Bosco, M.; Sambri, L.;
Melchiorre, P. Adv. Synth. Catal. 2008, 350, 49; (d) Hui, Y.; Jiang, J.; Wang, W.;
Chen, W.; Cai, Y.; Lin, L.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2010, 49, 4290;
(e) Kobayashi, N.; Iwai, K. J. Org. Chem. 1981, 46, 1823; (f) Tian, X.; Cassani, C.;
Liu, Y.; Moran, A.; Urakawa, A.; Galzerano, P.; Arceo, E.; Melchiorre, P. J. Am.
Chem. Soc. 2011, 133, 17934; (g) Zhao, F.; Zhang, W.; Yang, Y.; Pan, Y.; Chen, W.;
Liu, H.; Yan, L.; Tan, C.-H.; Jiang, Z. Adv. Synth. Catal. 2011, 353, 2624; (h) Abe, A.
M. M.; Sauerland, S. J. K.; Koskinen, A. M. P. J. Org. Chem. 2007, 72, 5411; (i) Dai,
L.; Yang, H.; Chen, F. Eur. J. Org. Chem. 2011, 5071; (j) Yoshida, M.; Ohno, Y.;
Hara, S. Tetrahedron Lett. 2010, 51, 5134; (k) Ueno, M.; Kitanosono, T.; Sakai, M.;
Kobayashi, S. Org. Biomol. Chem. 2011, 9, 3619.
7. (a) Gawronski, J.; Gawronska, K.; Wynberg, H. J. Chem. Soc., Chem. Commun.
1981, 307; (b) Hodge, P.; Khoshdel, E.; Waterhouse, J.; Frechet, J. M. J. J. Chem.
Soc., Perkin. Trans. I 1985, 2327; (c) Li, H.; Zu, L.; Wang, J.; Wang, W. Tetrahedron
Lett. 2006, 47, 3145.
8. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; John Wiley
and Sons: New York, 1999. p 454.
Acknowledgments
V.K.S. thanks the Department of Science and Technology, India
for a research grant through J. C. Bose fellowship. N.K.R. thanks
the Council of Scientific and Industrial Research (CSIR), New Delhi
for research fellowship. R.U. thanks CSIR for a S. P. Mukherjee fel-
lowship. We thank Drs. Alakesh Bisai and Vishal Rai (IISER Bhopal)
for their help.
9. For thioacetic acid addition to b-nitroalkenes, see: (a) Kimmel, K. L.; Robak, M.
T.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 8754; (b) Li, H.; Wang, J.; Zu, L.;
Wang, W. Tetrahedron Lett. 2006, 47, 2585.
10. Cinchona Alkaloids in Synthesis and Catalysis; Song, C. E., Ed.; WILEY-VCH Verlag
GmbH & Co. KGaA: Weinheim, 2009.
11. Rana, N. K.; Selvakumar, S.; Singh, V. K. J. Org. Chem. 2010, 75, 2089.
12. For details, see Supplementary data.
13. Lee, H. J.; Chae, Y. M.; Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 2875.
Supplementary data
Supplementary data associated with this article can be found, in