FULL PAPER
Inorg. Chem. 2003, 1939–1947; e) S. I. G. Dias, S. Rabaca, I. C.
Santos, L. C. J. Pereira, R. T. Henriques, M. Almeida, Inorg.
Chem. Commun. 2012, 15, 102–105; f) P. Basu, A. Nigam, B.
Mogesa, S. Denti, V. N. Nemykin, Inorg. Chim. Acta 2010, 363,
2857–2864.
K. D. Karlin, E. I. Stiefel, Progress in Inorganic Chemistry, vol.
52: Dithiolene Chemistry: Synthesis Properties, and Applica-
tions, John Wiley, New York, 2004.
a) V. Madhu, S. K. Das, Cryst. Growth Des. 2014, 14, 2343–
2356; b) V. Madhu, S. K. Das, Dalton Trans. 2011, 40, 12901–
12908; c) V. Madhu, S. K. Das, J. Chem. Sci. 2006, 118, 611–
617; d) V. Madhu, S. K. Das, Polyhedron 2004, 23, 1235–1242;
e) R. Bolligarla, G. Durgaprasad, S. K. Das, Inorg. Chem.
Commun. 2011, 14, 809–813; f) R. Bolligarla, S. K. Das, Crys-
tEngComm 2010, 12, 3409–3412; g) X. Ribas, J. Dias, J. Mor-
gado, K. Wurst, M. Almeida, J. Veciana, C. Rovira, Crys-
tEngComm 2002, 4, 564–567.
a) G. Durgaprasad, S. K. Das, J. Chem. Sci. 2015, 127, 295–
305; b) G. Durgaprasad, R. Bolligarla, S. K. Das, J. Or-
ganomet. Chem. 2011, 696, 3097–3105; c) G. Durgaprasad, R.
Bolligarla, S. K. Das, J. Organomet. Chem. 2012, 706, 37–45;
d) G. Durgaprasad, S. K. Das, J. Organomet. Chem. 2012, 717,
29–40; e) N. M. F. S. A. Cerqueira, B. Pakhira, S. Sarkar, J.
Biol. Inorg. Chem. 2015, 20, 323–335; f) B. K. Maiti, L. B.
Maia, K. Pal, B. Pakhira, T. Aviles, I. Moura, S. R. Pauleta,
J. L. Nunez, A. C. Rizzi, C. D. Brondino, S. Sarkar, J. J. G.
Moura, Inorg. Chem. 2014, 53, 12799–12808.
other atoms the 6-311G** basis set was used. Relativistic and other
effects of the core electrons of the Ni atom have been accounted
for by the inbuilt effective core potential (ECP) LanL2 of the
LanL2DZ basis set. It should be mentioned that the polarization
effect on C, S and N has been taken care of by incorporating five
d-type Gaussian polarization functions into the basis set, whereas
for H atoms three p-type polarization functions were included. The
ground-state electronic structure calculation of the complex anions
were performed by using the self-consistent reaction field (SCRF)
procedure of the GAUSSIAN 09 programming package,[10] where
solute complex ions are placed in the solvent cavity (DMF). The
ground-state anionic complexes were obtained by full geometry op-
timization followed by frequency calculations. No imaginary fre-
quencies (the lowest ten frequencies of each anionic complex are
available in Section 7 of the Supporting Information) were ob-
tained, which ensured that the optimized structure is not situated
at any saddle point of the ground-state potential energy surface.
Vertical excitations of the optimized structures were performed by
employing the TD-B3LYP method[17] and using the same basis sets
and same environment mentioned above. Other details of the com-
putational output are described in the Supporting Information,
Figure S7.
[4]
[5]
[6]
Supporting Information (see footnote on the first page of this arti-
cle): HRMS spectra, computational outputs, 2D fingerprint plot
derived from Hirshfeld surfaces, cyclic voltammograms, hydrogen-
bonding interactions in the crystal structure of compound 1 and
bond valence sum calculations for nickel in compounds 1 and 2.
[7]
R. Bolligarla, S. N. Reddy, G. Durgaprasad, V. Sreenivasulu,
S. K. Das, Inorg. Chem. 2013, 52, 66–76.
C.-M. Lee, Y.-L. Chuang, C.-Y. Chiang, G.-H. Lee, W.-F. Liaw,
Inorg. Chem. 2006, 45, 10895–10904.
[8]
[9]
B. Zheng, F. Tang, J. Luo, J. W. Schultz, N. P. Rath, L. M. Mir-
ica, J. Am. Chem. Soc. 2014, 136, 6499–6504.
Acknowledgments
[10]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Son-
nenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Starov-
erov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M.
Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Ad-
amo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Mar-
tin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,
J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09,
revision C.01, Gaussian, Inc., Wallingford CT, 2010.
The authors thank the Council of Scientific and Industrial Re-
search (CSIR), Government of India [project number 01 (2556)/12/
EMR-II] for financial support. The single-crystal X-ray diffraction
facility at the University of Hyderabad by the Department of Sci-
ence and technology (DST), New Delhi is highly acknowledged.
The authors thank Mr. Suresh for helping us in the different stages
of preparing the manuscript and Mr. Kumar for recording the ESR
spectra. Our special thanks go to Professor S. Mahapatra, School
of Chemistry and University of Hyderabad, for his help with the
theoretical calculations and to the CMSD for computational facili-
ties.
[1] a) R. Kato, Chem. Rev. 2004, 104, 5319–5346; b) X. M. Ren, S.
Nishihara, T. Akutagawa, S. Noro, T. Nakamura, Inorg. Chem.
2006, 45, 2229–2234; c) M. L. Mercuri, P. Deplano, L. Pilia,
A. Serpe, F. Artizzu, Coord. Chem. Rev. 2010, 254, 1419–1433;
d) A. T. Coomber, D. Beljonne, R. H. Friend, J. L. Brédas, A.
Charlton, N. Robertson, A. E. Underhill, M. Kurmoo, P. Day,
Nature 1996, 380, 144–146; e) N. Robertson, L. Cronin, Coord.
Chem. Rev. 2002, 227, 93–127.
[2] a) L. Serrano-Andrés, A. Avramopoulos, J. Li, P. Labéguerie,
D. Bégué, V. Kellö, M. G. Papadopoulos, J. Chem. Phys. 2009,
131, 134312–134322; b) P. Deplano, L. Pilia, D. Espa, M. L.
Mercuri, A. Serpe, Coord. Chem. Rev. 2010, 254, 1434–1447; c)
C.-T. Chen, S.-Y. Liao, K.-J. Lin, L.-L. Lai, Adv. Mater. 1998,
3, 334–338.
[11] V. Madhu, S. K. Das, Inorg. Chem. 2008, 47, 5055–5070.
[12] D.-Y. Noh, M.-J. Kang, H.-J. Lee, J.-H. Kim, J.-H. Choy, Bull.
Korean Chem. Soc. 1996, 17, 46–50.
[13] S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D.
Jayatilaka, M. A. Spackmann, CrystalExplorer 3.1 (2013), Uni-
versity of Western Australia, Crawley, Western Australia, 2005–
[14] a) J. J. McKinnon, D. Jayatilka, M. A. Spackman, Chem. Com-
mun. 2007, 3814–3816; b) F. L. Hirshfeld, Theor. Chim. Acta
1977, 44, 129–138; c) M. A. Spackman, D. Jayatilaka, Cryst-
EngComm 2009, 11, 19–32.
[3] a) U. T. Mueller-Westerhoff, B. Vance, D. I. Yoon, Tetrahedron
1991, 47, 909–932; b) J.-F. Bai, J.-L. Zuo, W.-L. Tan, W. Ji, Z.
Shen, H.-K. Fun, K. Chinnakali, I. A. Razak, X.-Z. You,
C. M. Che, J. Mater. Chem. 1999, 9, 2419–2423; c) P. Deplano,
M. L. Mercuri, G. Pintus, E. F. Trogu, Comments Inorg. Chem.
2001, 22, 353–374; d) M. C. Aragoni, M. Arca, T. Cassano, C.
Denotti, F. A. Devillanova, R. Frau, F. Isaia, F. Lelj, V. Lip-
polis, L. Nitti, P. Romaniello, R. Tommasi, G. Verani, Eur. J.
[15] J. L. Brusso, O. P. Clements, R. C. Haddon, M. E. Itkis, A. A.
Leitch, R. T. Okely, R. W. Reed, J. F. Richardson, J. Am. Chem.
Soc. 2004, 126, 8256–8265.
[16] Bruker AXS Inc., SADABS, SMART, SAINT and SHELXTL,
Madison, Wisconsin, USA, 2000.
[17] U. Salzner, J. Chem. Theory Comput. 2013, 9, 4064–4073.
Received: July 6, 2015
Published Online: November 4, 2015
Eur. J. Inorg. Chem. 2015, 5523–5533
5533
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim