2558
Faridoon et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2555–2559
and the partial positive charge on the biaryl carbonyl carbon; the
distance between this carbon atom and the oxygen atom of the
Asp 246 carboxylate group is 4.8 Å.
Acknowledgments
This work was supported by an Australian Research Council
Grant (DP0986292). Mr. Faridoon is the recipient of a scholarship
from the Pakistan Higher Education Commission (International Re-
search Support Initiative Program).
The proposed binding mode of 2c within the active site of pPAP
through the carboxylate group differs from the mode of binding of
b-lactam antibiotics in the active site of the structurally related
metallo-b-lactamases. In these structures the oxygen atom of the
carbonyl group of the b-lactam is believed to bind to one of the
two zinc ions, activating it for nucleophilic attack by a proximal
metal-bridging hydroxide.43 The modelling shown in Figure 1 is
therefore consistent with our findings that inhibitor 2c is compet-
itive, and is not a substrate for pPAP.
Modelling also led to some suggestions as to why penicillin G
(2i) is not an inhibitor of pPAP. Figure 2 shows the lowest energy
binding orientation of 2i with pPAP. It can be seen that 2i does
not bind in the active site of pPAP, preferring a stabilising electro-
static interaction between the side chain of Arg 27 and the carbox-
ylate group of the 2i (N–O distance 3.5 Å); the b-lactam carbonyl
oxygen also interacts with the Arg 27 side chain. This leaves the ac-
tive site of pPAP exposed. As noted above, we suggest that a con-
tributing factor for the potency of inhibitor 2c is the favourable
interaction between the biaryl carbonyl group and the side chain
of Asp 246 (Fig. 1). Penicillin G (2i) lacks this carbonyl group, and
so cannot interact in this way with the side chain of Asp 246. It
is notable that the most potent of our inhibitors listed in Table 1
bear the same 1,4-dicarbonylbenzene moiety.
Supplementary data
Supplementary data (experimental procedures for the prepara-
tion of compounds 2a–h and details of the kinetic assayed per-
formed) associated with this article can be found, in the online
References and notes
1. Mitic´, N.; Smith, S. J.; Neves, A.; Guddat, L. W.; Gahan, L. R.; Schenk, G. Chem.
Rev. 2006, 106, 3338.
2. Andersson, G.; Ek-Rylander, B.; Hollberg, K.; Ljusberg-Sjoelander, J.; Lang, P.;
Norgard, M.; Wang, Y.; Zhang, S.-J. J. Bone Miner. Res. 2003, 18, 1912.
3. Angel, N. Z.; Walsh, N.; Forwood, M. R.; Ostrowski, M. C.; Cassady, A. I.; Hume,
D. A. J. Bone Miner. Res. 2000, 15, 103.
4. Hayman, A. R.; Jones, S. J.; Boyde, A.; Foster, D.; Colledge, W. H.; Carlton, M. B.;
Evans, M. J.; Cox, T. M. Development 1996, 122, 3151.
5. Hoyer, J. D.; Li, C. Y.; Yam, L. T.; Hanson, C. A.; Kurtin, P. J. Am. J. Clin. Pathol.
1997, 108, 308.
6. Schindelmeiser, J.; Radzun, H. J.; Munstermann, D. Pathol. Res. Pract. 1991, 187,
209.
7. Schindelmeiser, J.; Gullotta, F.; Munstermann, D. Pathol. Res. Pract. 1989, 185,
184.
8. Twitchett, M. B.; Sykes, A. G. Eur. J. Inorg. Chem. 1999, 2105.
9. Wang, D. L.; Holz, R. C.; David, S. S.; Que, L., Jr.; Stankovich, M. T. Biochemistry
1991, 30, 8187.
10. Bernhardt, P. V.; Schenk, G.; Wilson, G. J. Biochemistry 2004, 43, 10387.
11. Beck, J. L.; McConachie, L. A.; Summors, A. C.; Arnold, W. N.; de Jersey, J.;
Zerner, B. Biochim. Biophys. Acta 1986, 869, 61.
12. Durmus, A.; Eicken, C.; Sift, B. H.; Kratel, A.; Kappl, R.; Huttermann, J.; Krebs, B.
Eur. J. Biochem. 1999, 260, 709.
13. Schenk, G.; Ge, Y.; Carrington, L. E.; Wynne, C. J.; Searle, I. R.; Carroll, B. J.;
Hamilton, S.; de Jersey, J. Arch. Biochem. Biophys. 1999, 370, 183.
14. Oddie, G. W.; Schenk, G.; Angel, N. Z.; Walsh, N.; Guddat, L. W.; de Jersey, J.;
Cassady, A. I.; Hamilton, S. E.; Hume, D. A. Bone 2000, 27, 575.
15. Susi, F. R.; Goldhaber, P.; Jennings, J. M. Am. J. Physiol. 1966, 211, 959.
16. Bonnick, S. L.; Shulman, L. Am. J. Med. 2006, 119, 25S.
17. Mauck, K. F.; Clarke, B. L. Mayo Clin. Proc. 2006, 81, 662.
18. Boonen, S. Bone 2007, 40, S26.
19. Halleen, J. M.; Tiitinen, S. L.; Ylipahkala, H.; Fagerlund, K. M.; Väänänen, H. K.
Clin. Lab. 2006, 52, 499.
20. McGeary, R. P.; Vella, P.; Mak, J. Y. W.; Guddat, L. W.; Schenk, G. Bioorg. Med.
Chem. Lett. 2009, 19, 163.
Again this modelling is consistent with our observations that 2i
is not an inhibitor, nor was it a substrate for pPAP under our assay
conditions. The stability of b-lactams towards pPAP was further
confirmed using the metallo-b-lactamase substrate, cephem CEN-
TA 3. This compound generates the intensely yellow 3-carboxy-
4-nitrobenzenethiolate anion on hydrolysis of its b-lactam ring.
No such colour developed when CENTA was incubated with pPAP
under our assay conditions, confirming that this compound is not
a substrate for pPAP.
H
H
N
S
S
O
N
S
O
CO2H
NO2
CO2H
3, CENTA
21. Vella, P.; McGeary, R. P.; Gahan, L. R.; Schenk, G. Curr. Enzyme Inhib. 2010, 6,
118.
22. Mohd-Pahmi, S. H.; Hussein, W. M.; Schenk, G.; McGeary, R. P. Bioorg. Med.
Chem. Lett. 2011, 21, 3092.
23. Reszka, A. A.; Rodan, G. A. Curr. Rheumatol. Rep. 2003, 5, 65.
24. Drake, M. T.; Clarke, B. L.; Khosla, S. Mayo Clin. Proc. 2008, 83, 1032.
The modelling of 2c further suggests that improvements in
binding might be achieved by increasing the size of the terminal
aryl ketone functionalities of these inhibitors, to exploit the surface
hydrophobic patch of Phe 244 (Fig. 1). Our previous work on phos-
phonic acid pPAP inhibitors demonstrated that increased inhibitor
potency could be achieved by incorporating into these molecules
hydrophobic naphthalenes to maximise interactions with surface
hydrophobic patches on the enzyme.22 Efforts are underway to
co-crystallise inhibitor 2c with pPAP to validate our modelling
results.
´
25. Mitic, N.; Valizadeh, M.; Leung, E. W. W.; de Jersey, J.; Hamilton, S.; Hume, D.
A.; Cassady, A. I.; Schenk, G. Arch. Biochem. Biophys. 2005, 439, 154.
26. Elliott, T. W.; Mitic´, N.; Gahan, L. R.; Guddat, L. W.; Schenk, G. J. Braz. Chem. Soc.
2006, 17, 1558.
27. Pinkse, M. W. H.; Merkx, M.; Averill, B. A. Biochemistry 1999, 38, 9926.
28. Wang, X.; Ho, R. Y. N.; Whiting, A. K.; Que, L., Jr. J. Am. Chem. Soc. 1999, 121,
9235.
29. Crans, D. C.; Simone, C. M.; Holz, R. C.; Que, L. Biochemistry 1992, 31, 11731.
30. Zaidi, M.; Moonga, B.; Moss, D. W.; Macintyre, I. Biochem. Biophys. Res. Commun.
1989, 159, 68.
31. Crowder, M. W.; Vincent, J. B.; Averill, B. A. Biochemistry 1992, 31, 9603.
32. Myers, J. K.; Antonelli, S. M.; Widlanski, T. S. J. Am. Chem. Soc. 1997, 119, 3163.
33. Valizadeh, M.; Schenk, G.; Nash, K.; Oddie, G. W.; Guddat, L. W.; Hume, D. A.; de
Jersey, J.; Burke, T. R.; Hamilton, S. Arch. Biochem. Biophys. 2004, 424, 154.
34. Powers, J. C.; Asgian, J. L.; Ekici, O. D.; James, K. E. Chem. Rev. 2002, 102, 4639.
35. Gérard, S.; Galleni, M.; Dive, G.; Marchand-Brynaert, J. Bioorg. Med. Chem. 2004,
12, 129.
In summary, 6-aminopenicillanic acid has been coupled with a
number of aromatic carboxylic acids to generate a novel class of
PAP inhibitors. Compound 2c was the most active of the inhibitors
examined, with a Kic value of 12 lM, comparable to the most po-
36. Kim, D. H.; Li, Z.-H.; Lee, S. S.; Kim, K. R.; Chung, S. J.; Kim, E.-J. Pure Appl. Chem.
1996, 68, 849.
37. Pandey, G.; Dumbre, S. G.; Khan, M. I.; Shabab, M.; Puranik, V. G. Tetrahedron
Lett. 2006, 47, 7923.
tent PAP inhibitors reported. In silico docking was used to examine
the likely binding orientation of 2c in the active site of pPAP as well
as that of penicillin G (2i), a non-inhibitor of pPAP.