2498
J. S. Yadav et al. / Tetrahedron Letters 53 (2012) 2496–2499
OH
O
1. DIBAL-H, THF,
Acknowledgment
S
- 78 oC, 20 min, 85%
N
S
D. C. B. and B. G. thank CSIR, New Delhi for financial assistance
in the form of fellowship.
10
2. 20, DBU, LiCl
CH3CN:CH2Cl2 = 3:1
Ph
0 oC to rt, 4 h, 78%
Supplementary data
OH
O
PhCHO, KOtBu
THF, 0 oC, 4 h, 87%
O
N
Supplementary data associated with this article can be found, in
21
Ph
References and notes
1. DIBAL-H, THF,
- 78 oC, 91%
O
O
O
O
O
1. (a) Yasui, K.; Tamura, Y.; Nakatani, T.; Kawada, K.; Ohtani, M. J. Org. Chem. 1995,
60, 7554–7567. and references cited therein; (b) Fang, X. P.; Anderson, J. E.;
Chang, C. J.; McLaughlin, J. L.; Fanwick, P. E. J. Nat. Prod. 1991, 54, 1034–1043;
(c) Collett, L. A.; Davies-Coleman, M. T.; Revett, D. E. A. Prog. Chem. Org. Nat.
Prod. 1998, 75, 181; (d) Collins, I. J. Chem. Soc. Perkin Trans. 1 1999, 1377–1395.
2. (a) Jewers, K. R.; Davis, J. B.; Dougan, J.; Manchanda, A. H.; Blunden, G.; Kyi, A.;
Wetchapinan, S. Phytochemistry 1972, 11, 2025–2030; (b) Tanaka, S.; Yoichi, S.;
Ao, L.; Matumoto, M.; Morimoto, K.; Akimoto, N.; Honda, G.; Tabata, M.;
Oshima, T.; Masuda, T.; Bin Asmawi, M. Z.; Ismail, Z.; Yusof, S. M.; Din, L. B.;
Said, I. M. Phytother. Res. 2001, 15, 681–686.
3. Drewes, S. E.; Horn, M. M.; Ramesar, N. S.; Ferreira, D.; Nel, R. J. J.; Hutchings, A.
Phytochemistry 1998, 49, 1683–1687.
4. Fu, X.; Sevenet, T.; Hamid, A.; Hadi, A.; Remy, F.; Pais, M. Phytochemistry 1993,
33, 1272–1274.
5. (a) Sturgeon, C. M.; Cinel, B.; Diaz-Marrero, A. R.; McHardy, L. M.; Ngo, M.;
Andersen, R. J.; Roberge, M. Cancer Chemother. Pharmacol. 2008, 61, 407–413;
(b) Giocondo, M. P.; Bassi, C. L.; Telascrea, M.; Cavalheiro, A. J.; Bolzani, V. S.;
Silva, D. H. S.; Aggustoni, D.; Mello, E. R.; Soares, C. P. Rev. Cienc Farm Basica Apl.
2009, 30, 315–322.
6. Schmeda-Hirschmann, G.; Astudillo, L.; Bastida, J.; Codina, C.; Rojas De Arias,
A.; Ferreira, M. E.; Inchaustti, A.; Yaluff, G. J. Pharm. Pharmacol. 2001, 53,
563576.
N
2. (CF3CH2O)2POCH2COOMe
14
NaH, THF, - 78 o
1 h, 90%
C
Ph
O
4N HCl, THF
0 oC, 4 h, 85%
COOEt
13
O
O
OH
O
Ac2O, Et3N, DMAP
CH Cl , 1
h, 88%
2
2
22
OAc O
O
P
O
EtO
EtO
O
N
20
3
(-)-(6S,2'S)-epi cryptocaryalactone 3.
7. Govindachari, T. R.; Parthasarathy, P. C.; Modi Indian J. Chem. 1972, 10, 149–
151.
8. Meyer, H. H. Leibigs Ann. Chem. 1984, 977–981.
Scheme 4. Synthesis of (ꢀ)-(6S,20S)-epi cryptocaryalactone.
9. (a) Mori, Y.; Furukawa, H. Chem. Pharm. Bull. 1994, 42, 2161–2163; (b) Sabitha,
G.; Bhaskar, V.; Reddy, S. S. S.; Yadav, J. S. Tetrahedron 2008, 64, 10207–10213;
(c) Radha Krishna, P.; Krishnarao, L.; Reddy, K. L. N. Beilstein J. Org. Chem. 2009,
10. (a) Sabitha, G.; Sudhakar, K.; Yadav, J. S. Tetrahedron Lett. 2006, 47, 8599–8602;
(b) Sabitha, G.; Bhaskar, V.; Reddy, S. S. S.; Yadav, J. S. Helv. Chim. Acta 2010, 93,
329–338; (c) Sabitha, G.; Reddy, S. S. S.; Reddy, D. V.; Bhaskar, V.; Yadav, J. S.
Synthesis 2010, 20, 3453–3460.
11. (a) Crimmins, M. T.; Chaudhary, K. Org. Lett. 2000, 2, 775–777; (b) Hodge, M. B.;
Olivo, H. F. Tetrahedron 2004, 60, 9397–9403; (c) Crimmins, M. T.; King, B. W.;
Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894–902; (d) Yadav, J. S.;
Kumar, V. N.; Rao, R. S.; Srihari, P. Synthesis 2008, 1938–1942; (e) Srihari, P.;
Ragendar, G.; Srinivasa Rao, R.; Yadav, J S Tetrahedron Lett. 2008, 49, 5590–
5592; (f) Srihari, P.; Satyanarayana, K.; Ganganna, B.; Yadav, J. S. J. Org. Chem.
2011, 6, 1922–1925.
12. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405–4408.
13. Etavo, P.; Badorrey, R.; Diaz-de-Villegas, M. D.; Galvez, J. A. J. Org. Chem. 2007,
72, 1005–1008.
was treated with 4 N HCl in THF to give the alcohol 19 in 82% yield.
Finally compound 19 was acetylated with acetic anhydride and tri-
ethylamine in the presence of catalytic amount of DMAP in CH2Cl2
to furnish the target compound 2 as a solid in 85% yield (Scheme
3), {mp 124–126 °C/lit. 126–127 °C and
½
a 2D5
= +18.2 (c 0.2
ꢁ
CHCl3)/lit8 +19.0 (c 0.67)}. The spectral data of the synthetic com-
pound 216 were in accordance with those of the natural product.7
Now for the synthesis of (ꢀ)-(6S,20S)-epi cryptocaryalactone, we
started from compound 10. Compound 10 was reduced with DI-
BAL-H to obtain corresponding aldehyde, which was subjected to
Wittig reacton13 with N-methoxy N-methyl diethylphosphonoace-
tamide14 20 to afford the
a,b-unsaturated amide 21 exclusively as
14. Nuzillard, J. M.; Boumendjel, A.; Massiot, G. Tetrahedron Lett. 1989, 29, 3779–
3780.
E-isomer. The compound 21 was subjected to an Evans acetal intra-
molecular oxa-Michael reaction with benzaldehyde and potassium
tert-butoxide to yield the product 14 in 87% yield15 (Scheme 4).
The compound 13 was treated with DIBAL-H in THF at ꢀ78 °C to
obtain aldehyde which was subjected to Still–Gennari12 reaction
with bis(2,2,2-trifluoroethyl)(ethoxy carbonylethyl)phosphonate
in THF at ꢀ78 °C to get the key precursor 13 in 90% yield (Scheme
4).12 The deprotection of benzylidene acetal followed by concomi-
tant lactonization was achieved with 4 N HCl in THF at 0 °C to ob-
tain 22 in 85% yield. Finally compound 22 was acetylated with
acetic anhydride and triethylamine in the presence of catalytic
amount of DMAP in CH2Cl2 to furnish the target compound 3 in
88% yield as a yellowish liquid (Scheme 4). The spectroscopic data
of synthetic compound 316 are in agreement with those reported
for the natural one.8
15. Evans, D. A.; Gauchet-Prunet, J. A. J. Org. Chem. 1993, 58, 2446–2453.
16. The 1H and 13C NMR spectral data and optical rotation, of the synthetic
compounds 2 and 3 are identical with the reported values. Spectroscopic data
for selected compounds are given below. Compound 2. White solid. mp 124–
126 °C;½a 2D5
ꢁ
= +18.5 (c 0.2, CHCl3); IR (KBr)
tmax : 2925, 1731, 1436, 1373, 1241,
1079, 1034, 965 cmꢀ1
;
1H NMR (500 MHz, CDCl3): d 7.40–7.35 (m, 2H), 7.34–
7.30 (m, 1H), 7.28–7.24 (m, 2H), 6.87 (dt, J = 9.8, 3.9 Hz, 1H), 6.67 (d, J = 15.8
Hz, 1H), 6.13 (dd, J = 15.8, 7.9 Hz, 1H), 6.04 (d, J = 9.8 Hz, 1H), 5.67–5.62 (m,
1H), 4.58–4.52 (m, 1H), 2.43–2.37 (m, 2H), 2.24–2.17 (m, 1H), 2.09 (s, 3H); 13
C
NMR (75 MHz, CDCl3): d 169.9, 164.0, 144.5, 135.5, 133.3, 128.5, 126.6, 126.4,
121.5, 74.1, 70.7, 39.8, 29.4, 21.2; Mass (ESI-MS) m/z: 309 [M+Na]+; HRMS (ESI)
[M+Na]+ m/z calcd for C17H18O4Na 309.1102, found 309.1098. Compound 8:
Yellow liquid; ½a D32
ꢁ
: +3.2 (c 0.4, CHCl3); IR (neat)
tmax: 3454, 2929, 2856, 1720,
1643, 1201, 1070 cmꢀ1
;
1H NMR (500 MHz, CDCl3): d 7.25–7.15 (m, 4H), 7.13–
7.07 (m, 1H), 6.44 (d, J = 15.3 Hz, 1H), 6.36–6.26 (m, 1H), 6.10 (dd, J = 15.3,
6.4 Hz, 1H), 5.78 (d, J = 11.5 Hz, 1H), 4.60–4.55 (m, 1H), 3.99–3.91 (m, 1H), 3.60
(s, 3H), 2.78–2.63 (m, 2H), 1.73–1.58 (m, 2H), 0.87 (s, 9H), 0.05 (s, 6H); 13C
NMR (75 MHz, CDCl3): d 166.9, 146.6, 136.6, 131.5, 129.8, 128.5, 127.5, 126.4,
120.8, 72.3, 67.9, 51.0, 43.3, 36.8, 25.8, 18.1, -4.4, -5.1; Mass (ESI-MS)
m/z:413 [M+Na]+; HRMS (ESI): calcd C22H34O4NaSi 413.2124, found
In conclusion, a concise total synthesis of (+)-(6R,20S)-crypto-
caryalactone and (ꢀ)-(6S,20S)-epi cryptocaryalactone has been
accomplished. The key reactions involved for the synthesis of com-
pounds 2 and 3 are asymmetric acetate aldol reaction, Evans acetal
intramolecular oxa-Michael reaction, Still–Gennari reaction and
acid catalyzed lactonisation.
413.2111.Compound 3. Yellowish liquid;
(neat) max: 3038, 3005, 2948, 2922, 1725, 1498, 1429, 1371,1240, 1072,
1030, 970 816, 750 cmꢀ1 1H NMR (300 MHz, CDCl3): d 7.43–7.23 (m, 5H), 6.87
½ ꢁ = ꢀ74.8 (c 0.4, CHCl3); IR
a 2D8
t
;
(dt, J = 9.0, 5.2 Hz, 1H), 6.70 (d, J = 15.8 Hz, 1H), 6.13 (dd, J = 15.8, 7.5 Hz, 1H),
6.03 (d, J = 10.5 Hz, 1H), 5.67 (q, J = 14.3, 6.7 Hz, 1H), 4.58–4.46 (m, 1H),