2558
D.-Y. Zhang et al. / Tetrahedron Letters 53 (2012) 2556–2559
Table 2
We also applied our ligand in the Rh-catalyzed asymmetric 1,4-
The effect of the S/C on conversion and enantioselectivitya
addition of phenylboronic acid to 2-cyclohexenone.16 Gratifyingly,
the reaction proceeded well with 97% ee and 92% yield. (Scheme 4)
In summary, we have developed a new electronically deficient
atropisomeric diphosphine ligand CF3O-BiPhep. The ligand affor-
ded high activity in the Ir-catalyzed asymmetric hydrogenation
of quinolines with ee up to 92% and TON up to 25,000. It showed
again that the electronically deficient atropisomeric diphosphine
ligand had good catalytic performance in the Ir-catalyzed asym-
metric hydrogenation of quinolines. The CF3O-BiPhep ligand was
also successfully applied in the Pd-catalyzed asymmetric hydroge-
nation of simple indoles and Rh-catalyzed asymmetric 1,4-addition
of phenylboronic acid to 2-cyclohexenone with up to 97% ee. Fur-
ther study on the detailed reason for the good performance of elec-
tronically deficient diphosphine ligand in the Ir-catalyzed
asymmetric hydrogenation of quinolines is underway and will be
disclosed in due course.
[Ir((COD)Cl]2/(S)-L/I2, THF
H2 (700 psi), rt
N
N
H
6a
5a
Entry
S/C
I2 (mol %)
Time (h)
Convn.b (%)
eec (%)
1
2
3
1000/1
5000/1
10,000/1
20,000/1
50,000/1
0.5
1.0
1.0
1.0
2.0
22
36
36
72
72
>95
>95
>95
>95
50
91 (S)
93 (S)
92 (S)
93 (S)
91 (S)
4
5d
a
b
c
Conditions: 5a (1 mmol), [Ir(COD)Cl]2/L (0.5/1.1), H2 (700 psi), THF (2 mL), rt.
Determined by 1H NMR.
Determined by HPLC.
5 mmol 5a, 3 mL THF.
d
Acknowledgments
-L
Pd(OCOCF3)2/(S) /EtSO3H
R
R
We are grateful to the financial support from National Science
Foundation of China (21125208 & 21032003), National Basic
Research Program (2010CB833300) and Chinese Academy of
Sciences.
DCM/TFE (1/1), H2 (700 psi)
rt, 24 h
N
H
N
H
8
7
Entry
R
Yield (%)
Ee (%)
CH3
Bn
8a
87 (
98 (
60 (
82 (
)
75 (S)
87 (S)
83 (R)
82 (R)
1
2
3
4
8b
)
)
Supplementary data
Cyclopentyl
Cyclohexyl
8c
8d
)
Supplementary data associated with this article can be found, in
Scheme 3. Asymmetric hydrogenation of simple indoles.
References and notes
O
O
[RhCl(C2H4)2]2 (1 mol%)
1. (a) Noyori, R. In Asymmetric Catalysis in Organic Synthesis; Wiley & Sons: New
York, 1994; pp 342–437; (b) Ohkuma, T.; Kitamura, M.; Noyori, R. In Catalysis
Asymmetric Synthesis; Ojima, I., Ed., second ed.; John Wiley & Sons: New York,
2000; pp 1–110.
2. For reviews, see: (a) McCarthy, M.; Guiry, P. J. Tetrahedron 2001, 57, 3809; (b)
Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
3. For reviews, see: (a) Flanagan, P. S.; Guiry, P. J. J. Organomet. Chem. 2006, 691,
2125; (b) Pollock, C. L.; Saunders, G. C.; Smyth, E. C. M. S.; Sorokin, V. I. J.
Fluorine Chem. 2008, 129, 142.
L
(S)- (2.2 mol%)
PhB(OH)2
+
KOH (50 mol%)
Toluene/H2O (10/1)
50 °C, 17 h
Ph
Yield: 92%
Ee: 97%
Scheme 4. The addition of phenylboronic acid to cyclohexenone.
4. Jeulin, S.; Duprat de Paule, S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.;
Champion, N.; Dellis, P. Angew. Chem., Int. Ed. 2004, 43, 320.
was noteworthy that the enantioselectivity changed slightly when
the S/C ratio was increased (91–93% ee). When the S/C ratio was
increased from 5000/1 to 20,000/1, prolonging the reaction time
would facilitate the reaction with full conversion (Table 2, entries
2–4). When S/C ratio further increased to 50,000/1, 50% conversion
was observed, providing a high TON value of 25,000 (Table 2, entry
5). It was obvious that our ligand afforded excellent performance
for Ir-catalyzed asymmetric hydrogenation of quinolines. It
revealed again that the electronically deficient atropisomeric
diphosphine ligand showed good catalytic performance in the
Ir-catalyzed asymmetric hydrogenation of quinolines.
5. Selected examples on transition metal-catalyzed asymmetric reactions using
DifluorPhos ligand, see: (a) Yamamoto, Y.; Yamamoto, H. Angew. Chem., Int. Ed.
2005, 44, 7082; (b) Wadamoto, M.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127,
14556; (c) Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2007,
129, 7439; (d) Deport, C.; Buchotte, M.; Abecassis, K.; Tadaoka, H.; Ayad, T.;
Ohshima, T.; Genêt, J.-P.; Mashima, K.; Ratovelomanana-Vidal, V. Synlett 2007,
2743; (e) Liao, X.; Weng, Z.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 195; (f)
Du, L.; Xu, L.-W.; Shimizu, Y.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2008, 130, 16146; (g) Navarre, L.; Martinez, R.; Genêt, J.-P.; Darses, S. J. Am.
Chem. Soc. 2008, 130, 6159; (h) Tadaoka, H.; Cartigny, D.; Nagano, T.; Gosavi, T.;
Ayad, T.; Genêt, J.-P.; Ohshima, T.; Ratovelomanana-Vidal, V.; Mashima, K.
Chem. -Eur. J. 2009, 15, 9990; (i) Cartigny, D.; Nagano, T.; Ayad, T.; Genêt, J.-P.;
Ohshima, T.; Mashima, K.; Ratovelomanana-Vidal, V. Adv. Synth. Catal. 2010,
352, 1886.
To further investigate the effectiveness of the ligand in other
reactions, we also applied it in the Pd-catalyzed asymmetric hydroge-
nation of indoles. In contrast to quinolines, the asymmetric hydroge-
nation of indoles was much less studied, especially the asymmetric
hydrogenation of unprotected indoles.12,14 Very recently, our group
developed the first highly enantioselective hydrogenation of unpro-
tected indoles using Pd-H8-BINAP with a Brønsted acid as an activa-
tor.15 Herein, we also applied our ligand in the Pd-catalyzed
asymmetric hydrogenation of simple indoles using a Brønsted acid
as an activator. To our delight, the ligand also proceeded well in this
reaction and the results were shown in Scheme 3. 2-Methyl and 2-
benzyl substituted indoles could be hydrogenated smoothly with
75% and 87% ee, respectively (Scheme 3, entries 1 and 2). With the
2-cyclopentyl and 2-cyclohexyl substituted indoles, 83% and 82%
ees were obtained, respectively (Scheme 3, entries 3 and 4).
6. Korenaga, T.; Osaki, K.; Maenishi, R.; Sakai, T. Org. Lett. 2009, 11, 2325.
7. Korenaga, T.; Maenishi, R.; Hayashi, K.; Sakai, T. Adv. Synth. Catal. 2010, 352,
3247.
8. (a) Tang, W.-J.; Tan, J.; Xu; L, -J.; Lam, K.-H.; Fan, Q.-H.; Chan, A. S. C. Adv. Synth.
Catal. 2010, 352, 1055; (b) Tang, W.-J.; Sun, Y.-W.; Xu, L.-J.; Wang, T.-L.; Fan, Q.-
H.; Lam, K.-H.; Chan, A. S. C. Org. Biomol. Chem. 2010, 8, 3464.
9. Zhang, D.-Y.; Wang, D.-S.; Wang, M.-C.; Yu, C.-B.; Gao, K.; Zhou, Y.-G. Synthesis
2011, 2796.
10. (a) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.;
Kumobayashi, H. Adv. Synth. Catal. 2001, 343, 264; (b) Pai, C.-C.; Li, Y.-M.;
Zhou, Z.-Y.; Chan, A. S. C. Tetrahedron Lett. 2002, 43, 2789; (c) Duprat de Paule,
S.; Jeulin, S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P.
Tetrahedron Lett. 2003, 44, 823; (d) Raghunath, M.; Zhang, X. Tetrahedron Lett.
2005, 46, 8213; (e) Chen, Q.-A.; Dong, X.; Chen, M.-W.; Wang, D.-S.; Zhou, Y.-
G.; Li, Y.-X. Org. Lett. 2010, 12, 1928.
11. Characterization data of (S)-CF3O-BiPhep: White solid. Mp 194–195 °C.
½ ꢂ
a 2D7 = 87.0 (c 0.97, CHCl3). 1H NMR (400 MHz, CDCl3): d 7.25–7.35 (m, 14H),
7.14–7.20 (m, 8H), 7.11 (d, J = 8.2 Hz, 2H), 6.99–7.06 (m, 2H). 13C NMR
(100 MHz, CDCl3): d 134.5, 134.3, 134.2, 133.6, 133.5, 133.4, 131.7, 129.7,