N. D. Gaikwad et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3449–3454
3453
Table 3
In conclusion, a series of new 4a–y were synthesized. The phar-
macological studies were undertaken to evaluate the effect of sub-
stituents for their antimicrobial activities. Most of the synthesized
compounds exhibited moderate to good activity towards Gram-po-
sitive and Gram-negative bacteria as well as both the fungi species.
The enhancement in antibacterial and antifungal activity can be
attributed to the presence of pharmacologically active F, Cl, Br
groups irrespective of their position in the molecule.
Minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC)
and fungicidal/fungistatic activity (MFC/MIC) of 4a–y
Compounds
Microorganisms
C. albicans A. niger
MIC MFC
A. niger
C. albicans
MIC
MFC
MFC/MIC
MFC/MIC
4a
4b
4c
4d
4e
16
16
—
64
16
—
16
16
128
32
32
16
16
32
—
32
64
256
64
64
64
32
128
—
4
1
—
4
4
2
1
1
2
2
4
2
2
2
4
2
4
—
2
4
—
2
—
—
2
—
2
32
32
16
32
64
128
—
128
128
32
32
64
256
—
Acknowledgments
4f
We thank UGC, New Delhi and Principal, K.T.H.M. College, Nas-
hik for providing laboratory facilities.
4g
4h
4i
4j
4k
4l
4m
4n
4o
4p
4q
4r
64
32
—
128
128
—
—
2
2
Supplementary data
32
64
—
64
128
—
Supplementary data associated with this article can be found, in
These data include MOL files and InChiKeys of the most important
compounds described in this article.
32
—
—
128
—
32
64
128
32
—
64
—
—
256
—
—
—
—
2
—
—
—
2
—
—
—
—
32
—
64
—
—
—
—
—
64
References and notes
4s
4t
128
256
128
—
2
2
4
—
—
—
2
32
32
16
—
64
64
64
—
1. Rashed, N.; El Massry, A. M.; El Ashry, E. S. H.; Amer, A.; Zimmer, H. J. Heterocycl.
Chem. 1990, 27, 691.
2. Rollas, S.; Kucukguzel, S. G. Molecules 2007, 12, 1910.
3. Rollas, S.; Gulerman, N.; Edeniz, H. Farmaco 2002, 57, 171.
4. Imramovsky, A.; Polanc, S.; Vinsova, J.; Kocevar, M.; Jampitek, J.; Reckova, Z.;
Kaustova, J. A. Bioorg. Med. Chem. 2007, 15, 2551.
5. Dimmock, J. R.; Vasishtha, S. C.; Stables, J. P. Eur. J. Med. Chem. 2000, 35,
241.
6. Lima, P. C.; Lima, L. M.; Silva, K. C.; Leda, P. H.; Miranda, A. L. P.; Fraga, C. A. M.;
Barreiro, E. J. Eur. J. Med. Chem. 2000, 35, 187.
4u
4v
4w
4x
4y
2
4
—
—
128
16
—
—
256
32
—
—
—
2
—
—
—
—
Nystatin
16
32
2
Nystatin (
imum inhibitory concentration, that is, the lowest concentration of the compound
to inhibit the growth of fungus completely; MBC ( g/ml) = minimum bactericidal
concentration, that is, the lowest concentration of the compound for killing the
bacteria completely.
lg/ml) were used as positive control; (—) = inactive; MIC (lg/ml) = min-
l
7. Salgin-Goksen, U.; Gokham-Keleci, N.; Gostal, O.; Koysal, Y.; Kilici, E.; Is_ik, S_.;
Aktay, G.; Ozalp, M. Bioorg. Med. Chem. 2004, 12, 3149.
8. Silva, G. A.; Costa, L. M. M.; Brito, F. C. F.; Miranda, A. L. P.; Barreiro, E. J.; Fraga,
C. A. M. Bioorg. Med. Chem. 2004, 12, 3149.
9. Bijev, A. Lett. Drug Des. Discov. 2006, 3, 506.
10. Abdel-Aal, M. T.; El-sayed, W. A.; El-ashry, E. H. Arch. Pharm. Chem. Life Sci.
2006, 339, 656.
11. Cocco, M. T.; Congiu, C.; Lilliu, V.; Onnis, V. Bioorg. Med. Chem. 2005, 14, 366.
12. Walcourt, A.; Loyevsky, M.; Lovejoy, D. B.; Gordeuk, V. R.; Richardson, D. R. Int.
J. Biochem. Cell Biol. 2004, 36, 401.
13. Ashok, M.; Holla, B. S. J. Pharmacol. Toxicol. 2007, 2, 256.
14. Prasad, D. J.; Ashok, M.; Karegoudar, P.; Poojary, B.; Holla, B. S.; Kumari, N. S.
Eur. J. Med. Chem. 2009, 44, 551.
whereas4b, 4f, 4g, 4m, 4p, 4u required 32
required 64 g/mL against S. aureus. Also compounds 4i required
32 g/mL, 4f, 4l, 4q required 64 g/mL and 4a, 4k, 4s, 4v, 4x, 4y
registered their MIC at 128 g/mL against E. coli. However, the
CF3 substituent did not enhance the activity. Introduction of the
F, Cl, Br, NO2 substituent on the phenyl ring showed an improve-
lg/mL and4a, 4e, 4o, 4r
l
l
l
l
ment in its activity. Compounds 4e, 4g required 32
4o required 64 g/mL and 4d, 4f, 4h, 4m, 4r showed MIC at
128 g/mL against B. subtilis. Compounds 4b, 4j, 4k, 4l, 4p, 4q,
4w and 4a, 4f, 4g, 4n registered MIC at 64 and 128 g/mL against
lg/mL, 4a, 4c,
15. Turan-Zitouni, G.; Kaplancikli, Z. A.; Yildiz, M. T.; Chevallet, P.; Kaya, D. Eur. J.
l
Med. Chem. 2005, 40, 607.
16. Walczak, K.; Gondela, A.; Suwin´ ski, J. Eur. J. Med. Chem. 2004, 39, 849.
17. Almasirad, A.; Tabatabai, S. A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.;
Dalvandi, A.; Shafiee, A. Bioorg. Med. Chem. Lett. 2004, 14, 6057.
18. Haber, J. Cas. Lek. Cesk. 2001, 140, 596.
19. Sheehan, D. J.; Hitchcock, C. A.; Sibley, C. M. Clin. Microbiol. Rev. 1999, 12, 40.
20. Chai, X. Y.; Zhang, J.; Hu, H. G.; Yu, S. C.; Sun, Q. Y.; Dan, Z. G.; Jiang, Y. Y.; Wu, Q.
Y. Euro. J. Med. Chem. 1913, 2009, 44.
21. Yoshida, Y.; Aoyama, Y.; Noshiro, M.; Gotoh, O. Biochem. Biophys. Res. Commun.
2000, 273, 799.
22. Nelson, D. R. Arch. Biochem. Biophys. 1999, 369, 1.
23. Fischer, R. T.; Trzaskos, J. M.; Magolda, R. L.; Ko, S. S.; Brosz, C. S.; Larsen, B. J.
Biol. Chem. 1991, 266, 6124.
24. Xiao, L.; Madison, V.; Chau, A. S.; Loebenberg, D.; Palermo, R. E.; McNicholas, P.
M. Antimicrob. Agents Chemother. 2004, 48, 568.
25. Chen, S. H.; Sheng, C. Q.; Xu, X. H.; Zhang, W. N.; He, C. Biol. Pharm. Bull. 2007,
30, 1246.
26. Ji, H.; Zhang, W.; Zhou, Y.; Zhang, M.; Zhu, J.; Song, Y.; Lu, J. J. Med. Chem. 2000,
4, 2493.
27. Kopanska, K.; Najda, A.; Zebrowska, J.; Chomicz, L.; Piekarezyk, J.; Myjak, P.;
Bretner, M. Bioorg. Med. Chem. 2004, 12, 2617.
l
l
P. aeruginusa (they are four and eightfold less potent than chloram-
phenicol). The MBC of few compounds was found to be the same as
MIC but in most of the compounds it was 2- or 4-folds higher than
the corresponding MIC results.
Table 2 also describes the MIC of synthesized compounds for
their antifungal activity. The introduction of F, Cl, Br, NO2 substit-
uents on phenyl ring exhibited moderate to good activity against C.
albicans and A. niger, whereas, except the 4m, 4o, 4r, 4w, 4x all
other compounds showed moderate to good activity against A. ni-
ger and C. albicans. Of the fluoro and chloro substituted compounds
4a, 4b, 4f registered a excellent activity against A. niger at 16
l
g/mL, also compounds 4d, 4e, 4g, 4k, 4p, 4t, 4u recorded good
activity at 32 g/mL and 4h, 4j, 4l recorded moderate activity at
64 g/mL which is fourfold lower than standard Nystatin. In addi-
tion compounds 4a, 4b, 4f, 4g registered the MIC at 16 g/mL, 4d,
4e, 4h, 4l, 4n, 4s, 4u, 4v recorded at 32 g/mL and4c, 4i, 4q, 4t, 4x
registered the MIC at 128 g/mL against C. albicans. Introduction of
l
l
28. Al-omran, F.; Mohareb, R. M.; El-Khair, A. A. J. Heterocycl. Chem. 2002, 39(5),
877.
29. Dawood, K. M.; Abdel-Gawad, H.; Rageb, E. A.; Ellithey, M.; Mohammed, H. A.
Bioorg. Med. Chem. 2006, 14, 3672.
30. Yaseen, A.; Al-Soud; Najim, A.; Al-Masoudi; Abd El-Rahman; Ferwana, S. Biorg.
Med. Chem. 2003, 11, 1701.
31. Sparatore, A.; Godia, C.; Perrino, E.; Romeo, S.; Stales, B.; Fruchart, J. C.;
Crestani, M. Chem. Biodivers. 2006, 3, 385.
l
l
l
the halo substituent on the phenyl ring inhibited the growth of A.
niger and C. albicans. The MFC of most of the compounds was two
or three folds higher than the corresponding MIC results. Most of
the synthesized compounds showed good fungicidal activity
against the fungal strain.
32. Bretner, M.; Baier, A.; Kopanska, K.; Najda, A.; Schoof, A.; Reinholz, M.;
Lipniacki, A.; Piasek, A.; Kulikowski, T.; Borowski, P. Antivir. Chem. Chemother.
2005, 16, 315.