Pattama Saisaha et al.
FULL PAPERS
bearing oxidation sensitive functional groups, i.e., al- Acknowledgements
cohols, aldehydes, alkenes and alkanes, has been de-
scribed.
The current catalytic system is capable of oxidation
The authors thank Dr. Paul L. Alsters for useful discussion,
the Netherlands Organisation for Scientific Research (VIDI
Grant 700.57.428, to WRB), the European Research Council
(Starting Investigator Grant 279549, to WRB), the University
of Groningen (Ubbo Emmius studentship, to PS), Erasmus
(to LB, MvdM), NRSC-C (to BLF) and the Foundation for
Technology and Science (STW Grant No. 11059, to WRB,
JWdB) for financial support. COST action CM1003 is ac-
knowledged for discussion.
of a wide variety of oxidisable groups. For substrates
containing more than one oxidation sensitive moiety,
selective oxidation of only one functional group could
be attained, as exemplified in the selective epoxida-
tion of, e.g., citronellol and 3-vinylbenzaldehyde. The
sensitivity of the Mn-tmtacn/carboxylic acid system
towards the electronic and steric properties of the
substrate can be used to obtain selective oxidation in
bifunctional substrates, such as carvone and citronel-
lol. Furthermore, the reactivity of the catalytic system
can be fine-tuned by varying, for example, the nature
of the carboxylic acid co-catalyst (which are ligands in
References
[1] Aziridines and Epoxides in Organic Synthesis, 1st edn.,
(Ed.: A. K. Yudin), Wiley-VCH, Weinheim, 2006.
[2] H. Adolfsson, in: Modern Oxidation Methods, 2nd
edn., (Ed.: J.-E. Bꢂckvall), Wiley-VCH, Weinheim,
2010, pp 37–84.
the bis-carboxylato bridged MnIII,III dimers 2) and/or
2
the solvent polarity, thus enabling the oxidation of
otherwise challenging substrates. Importantly, the
Mn-tmtacn/carboxylic acid system is compatible with
substrates bearing a variety of protecting groups such
as benzoyl (Bz), tert-butoxycarbonyl (Boc) and phtha-
limide (Phth).
These results open the way to more widespread use
of this highly atom-efficient catalyst system, especially
on synthetically useful scales.
[3] See, for example: a) A. J. Wu, J. E. Penner-Hahn, V. L.
Pecoraro, Chem. Rev. 2004, 104, 903–938; b) B. S. Lane,
K. Burgess, Chem. Rev. 2003, 103, 2457–2473; c) H. C.
Kolb, M. S. Van Nieuwenhze, K. B. Sharpless, Chem.
Rev. 1994, 94, 2483–2547; d) Modern Oxidation Meth-
ods, 2nd edn., (Ed.: J.-E. Bꢂckvall), Wiley-VCH, Wein-
heim, 2010; e) Metal-Catalyzed Oxidations of Organic
Compounds, 1st edn., (Eds.: R. A. Sheldon, J. K.
Kochi), Academic Press, New York, 1981; f) J. Piera, J.-
E. Bꢂckvall, Angew. Chem. 2008, 120, 3558–3576;
Angew. Chem. Int. Ed. 2008, 47, 3506–3523; g) E. P.
Talsi, K. P. Bryliakov, Coord. Chem. Rev. 2012, 256,
1418–1434; h) S. E. Davis, M. S. Ide, R. J. Davis, Green
Chem. 2013, 15, 17–45; i) F. Recupero, C. Punta, Chem.
Rev. 2007, 107, 3800–3842; j) A. M. Kirillov, M. V. Kiril-
lova, A. J. L. Pombeiro, Coord. Chem. Rev. 2012, 256,
2741–2759; k) R. Spaccini, L. Liguori, C. Punta, H.-R.
Bjørsvik, ChemSusChem 2012, 5, 261–265; l) H. Wang,
W. Fan, Y. He, J. Wang, J. N. Kondo, T. Tatsumi, J.
Catal. 2013, 299, 10–19.
Experimental Section
See the Supporting Information for experimental details re-
garding catalysis conditions, synthesis and characterisation
of substrates and isolation of products.
General Procedure for Substrate Oxidation
Prior to the experiment,
a stock solution containing
[MnIV,IV2O
G
R
[4] R. Noyori, M. Aoki, K. Sato, Chem. Commun. 2003,
acid (0.30 mmol) and H2O2 (50 wt% in water, 86 mL) in
CH3CN (10 mL) was prepared at room temperature. The
mixture was stirred for 20 min, after which 1.0 mL of this
1977–1986.
[5] I. W. C. E. Arends, R. A. Sheldon, in: Modern Oxida-
tion Methods, 2nd edn., (Ed.: J.-E. Bꢂckvall), Wiley-
VCH, Weinheim, 2010, pp 147–185.
stock solution {3.0 mmol [MnIV,IV2O
3ACHTUNGTRENN(UG tmtacn)2]ACHTUNTGERN(NUGN PF6)2·H2O,
0.1 mol%, 30.0 mmol trichloroacetic acid, 1.0 mol%} was
added to the solution of the substrate (3 mmol) in CH3CN
(2 mL). H2O2 (50 wt% in water, typically 1.10–1.45 equiv.)
was added via syringe pump and the mixture was stirred for
16 h at room temperature. After 16 h, the mixture was
added to saturated aqueous NaHCO3 (20 mL) and CH2Cl2
(20 mL). After separation of the layers, the aqueous layer
was extracted with CH2Cl2 (3ꢁ20 mL). The combined or-
ganic layers were dried on MgSO4 and concentrated under
vacuum providing the products.
Caution: The drying or concentration of solutions that po-
tentially contain H2O2 should be avoided. Prior to drying or
concentrating, the presence of H2O2 should be tested for,
using peroxide test strips, followed by neutralisation on solid
NaHSO3 or another suitable reducing agent. When working
with H2O2, especially in acetone, suitable protective safe-
guards should be in place at all times.
[6] M. Beller, Adv. Synth. Catal. 2004, 346, 107–108.
[7] K. Wieghardt, U. Bossek, B. Nuber, J. Weiss, J. Bonvoi-
sin, M. Corbella, S. E. Vitols, J. J. Girerd, J. Am. Chem.
Soc. 1988, 110, 7398–7411.
[8] A. Darovsky, V. Kezerashvili, P. Coppens, T. Weyher-
muller, H. Hummel, K. Wieghardt, Inorg. Chem. 1996,
35, 6916–6917.
[9] R. Hage, B. Krijnen, J. B. Warnaar, F. Hartl, D. J. Stufk-
ens, T. L. Snoeck, Inorg. Chem. 1995, 34, 4973–4978.
[10] U. Bossek, T. Weyhermuller, K. Wieghardt, B. Nuber,
J. Weiss, J. Am. Chem. Soc. 1990, 112, 6387–6388.
[11] R. Hage, J. E. Iburg, J. Kerschner, J. H. Koek, E. L. M.
Lempers, R. J. Martens, U. S. Racherla, S. W. Russell,
T. Swarthoff, M. R. P. van Vliet, J. B. Warnaar, L. van
der Wolf, B. Krijnen, Nature 1994, 369, 637–639.
[12] R. Hage, A. Lienke, Angew. Chem. 2006, 118, 212–229;
Angew. Chem. Int. Ed. 2006, 45, 206–222.
2602
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2013, 355, 2591 – 2603