D. Alves et al. / Tetrahedron Letters 52 (2011) 133–135
135
5. (a) Waters, M. S.; Cowen, J. A.; McWilliams, J. C.; Maligres, P. E.; Askin, D.
Tetrahedron Lett. 2000, 41, 141; (b) Dabdoub, M. J.; Dabdoub, V. B.; Lenardão, E.
J.; Hurtado, G. R.; Barbosa, S. L.; Guerrero, P. G., Jr.; Nazário, C. E. D.; Viana, L. H.;
Santana, A. S.; Baroni, A. C. M. Synlett 2009, 986; (c) Wadsworth, D. H.; Detty, M.
R. J. Org. Chem. 1980, 45, 4611.
Satisfactory results were achieved using alkyl thiols and aryl thiols
containing electron donating or electron withdrawing groups
(Table 2, entries 1–8). The use of diynols afforded good to excellent
yields of desired products (Table 2, entries 9–12). Additionally,
when the unsymmetrical 2-methyl-6-phenylhexa-3,5-diyn-2-ol
1d reacted with benzenethiol 2a, we observed exclusively the for-
mation of (Z)-2-methyl-6-phenyl-3-(phenylthio)hex-3-en-5-yn-2-
ol 3g in 92% yield (Table 2, entry 13). In this case, the propargylic
triple bond underwent addition of the phenylthiolate anion prefer-
entially than the triple bond containing the phenyl group.5b A reuse
study of the solvent/catalytic system was carried out for the reac-
tion.22 After completion of hydrothiolation, the reaction mixture
was diluted with hexane/ethyl acetate (90:10) and the product
was isolated. The remaining PEG or glycerol/KF/Al2O3 mixture
was directly reused for further reactions. It was observed that a
good level of efficiency was maintained even after three cycles.
Thus, the product 3a was obtained in 93%, 89%, 80% yields using
PEG as solvent, while using glycerol, the isolated yields were
64%, 55%, and 48% after successive cycles.
Concerning the stereochemistry of products, the formation of
(Z)-enyne was preferential for all the tested examples. Thus, Z-3a
was obtained preferentially from the reaction of 1,4-diorganyl-
1,3-butadiyne 1a with benzenethiol 2a (Z:E ratio = 92:8, Table 2,
entry 1), while 4-methoxybenzenethiol 2d afforded exclusively
the respective (Z)-adduct 3d (entries 7 and 8). A similar 100% ste-
reoselectivity was observed when the diynols 1b and 1c were used,
giving exclusively the respective adducts 3e and 3f with Z config-
uration (Table 2, entries 9–12). Comparable result was obtained
using a radical inhibitor. Thus, the reaction of 1a with 2a was per-
formed in the presence of the hydroquinone affording the product
3a in 92% yield and with a Z:E ratio = 90:10 (Table 2, entry 1). This
result is in according with a probable anionic mechanism.
In summary, an efficient and clean protocol was developed for
the selective synthesis of thiobutenynes. The reaction is promoted
by KF/Al2O3 and can be performed using glycerol or PEG as sol-
vents. The reactions proceeds easily and the products were ob-
tained in good to excellent yields. The use of glycerol as a
renewable, non-toxic, and recyclable solvent opens new possibili-
ties for future applications of glycerol in green and sustainable
chemistry.
6. Manarin, F.; Roehrs, J. A.; Prigol, M.; Alves, D.; Nogueira, C. W.; Zeni, G.
Tetrahedron Lett. 2007, 48, 4805.
7. (a) Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P. Organometallics 2006, 25, 1970;
(b) Corma, A.; González-Arellano, C.; Iglesias, M.; Sánchez, F. Appl. Catal. A: Gen.
2010, 375, 49; (c) Banerjee, S.; Das, J.; Santra, S. Tetrahedron Lett. 2009, 50, 124;
(d) Sridhar, R.; Surendra, K.; Krishnaveni, N. S.; Srinivas, B.; Rao, K. R. Synlett
2006, 3495.
8. Schneider, C. C.; Godoi, B.; Prigol, M.; Nogueira, C. W.; Zeni, G. Organometallics
2007, 26, 4252.
9. (a) Volkov, A. N.; Volkkova, K. A.; Levanova, E. P.; Trofimov, B. A. Zh. Org. Khim.
1982, 18, 2049; (b) Volkov, A. N.; Volkova, K. A. Russ. J. Org. Chem. 2004, 40,
1679; (c) Zeni, G.; Nogueira, C. W.; Pena, J. M.; Pilissão, C.; Menezes, P. H.;
Braga, A. L.; Rocha, J. B. T. Synlett 2003, 579; (d) Zeni, G.; Stracke, M. P.; Lissner,
E.; Braga, A. L. Synlett 2003, 1880.
10. (a) Basu, B.; Das, P.; Das, S. Curr. Org. Chem. 2008, 12, 141; (b) Blass, B. E.
Tetrahedron 2002, 58, 9301.
11. See, for instance: (a) Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S.
Tetrahedron 2005, 61, 1015; (b) Dupont, J.; Souza, R. F.; Suarez, P. A. Z. Chem.
Rev. 2002, 102, 3667; (c) Dupont, J.; Consorti, C. S.; Spencer, J. J. Braz. Chem. Soc.
2000, 11, 337; (d) Consorti, C. S.; Souza, R. F.; Dupont, J.; Suarez, P. A. Z. Quím.
Nova 2001, 24, 830; Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis;
Wiley-VCH: New York, 2002; (f) Welton, T. Chem. Rev. 1999, 99, 2071; (g)
Wassercheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772; (h) Davis, J. H.,
Jr.; Fox, P. A. Chem. Commun. 2003, 1209.
12. Silveira, C. C.; Mendes, S. R.; Líbero, F. M.; Lenardão, E. J.; Perin, G. Tetrahedron
Lett. 2009, 50, 6060.
13. (a) Lenardão, E. J.; Trecha, D. O.; Ferreira, P. C.; Jacob, R. G.; Perin, G. J. Braz.
Chem. Soc. 2009, 20, 93; (b) Lenardão, E. J.; Silva, M. S.; Sachini, M.; Lara, R. G.;
Jacob, R. G.; Perin, G. ARKIVOC 2009, xi, 221; (c) Perin, G.; Mello, L. G.; Radatz, C.
S.; Savegnago, L.; Alves, D.; Jacob, R. G.; Lenardão, E. J. Tetrahedron Lett. 2010,
51, 4354.
14. (a) Gu, Y.; Jérôme, F. Green Chem. 2010, 12, 1127; (b) Wolfson, A.; Dlugy, C.
Chem. Pap. 2007, 61, 228.
15. Wolfson, A.; Litvak, G.; Dlugy, C.; Shotland, Y.; Tavor, D. Ind. Crops Prod. 2009,
30, 78.
16. Wolfson, A.; Dlugy, C.; Shotland, Y. Environ. Chem. Lett. 2007, 5, 67.
17. Wolfson, A.; Dlugy, C.; Shotland, Y.; Tavor, D. Tetrahedron Lett. 2009, 50, 5951.
18. (a) He, F.; Li, P.; Gu, Y.; Li, G. Green Chem. 2009, 11, 1767; (b) Karam, A.;
Villandier, N.; Delample, M.; Koerkamp, C. K.; Douliez, J.-P.; Granet, R.; Krausz,
P.; Barrault, J.; Jérôme, F. Chem. Eur. J. 2008, 14, 10196; (c) Gu, Y.; Barrault, J.;
Jérôme, F. Adv. Synth. Catal. 2008, 350, 2007.
19. (a) Lenardão, E. J.; Ferreira, P. C.; Jacob, R. G.; Perin, G.; Leite, F. P. L. Tetrahedron
Lett. 2007, 48, 6763; (b) Lenardão, E. J.; Lara, R. G.; Silva, M. S.; Jacob, R. G.;
Perin, G. Tetrahedron Lett. 2007, 48, 7668; (c) Perin, G.; Jacob, R. G.; Botteselle,
G. V.; Kublik, E. L.; Lenardão, E. J.; Cella, R.; Santos, P. C. S. J. Braz. Chem. Soc.
2005, 16, 857; (d) Silva, M. S.; Lara, R. G.; Marczewski, J. M.; Jacob, R. G.;
Lenardão, E. J.; Perin, G. Tetrahedron Lett. 2008, 49, 1927; (e) Victoria, F. N.;
Radatz, C. S.; Sachini, M.; Jacob, R. G.; Perin, G.; da Silva, W. P.; Lenardão, E. J.
Tetrahedron Lett. 2009, 50, 6761.
20. Preparation of alumina supported potassium fluoride:23 Alumina (4.0 g of
Al2O3 90, 0.063–0.200 mm, Merck), KF.2H2O (6.0 g) and water (10 mL) were
mixed in a 50 mL beaker and the suspension stirred at 65 °C for 1 h. The
resulting solid was dried at 80 °C for 1 h and subsequently 4 h at 300 °C in an
oven and finally cooled to room temperature in a desiccator. The content of KF
is about 50% (m/m).
Acknowledgments
We are grateful to FINEP, CAPES, CNPq, and FAPERGS/PRONEX
(10/0005-1 and 10/0130-3) for the financial support.
21. General procedure for the synthesis of thiobutenynes 3: To a mixture of 1,4-
diphenyl-1,3-butadiyne (1a; 0.202 g; 1 mmol), benzenethiol (2a; 0.110 g;
1 mmol) and PEG or glycerol (3 mL), KF/Al2O3 (0.07 g, obtained as described
above) was added at room temperature. The reaction mixture was allowed to
stir at 60 °C for the time indicated in Table 2. After that, the reaction mixture
was washed with a mixture of hexane/ethyl acetate (90:10; 3 Â 5 mL) and the
upper organic phase was separated from the PEG or glycerol containing the
supported catalyst, dried with MgSO4 and evaporated under reduced pressure.
The product was isolated by column chromatography using hexane as eluent,
yielding a mixture of Z-3a and E-3a (0.290 g, 93%, Z:E ratio = 92:8). 1H NMR
(200 MHz, CDCl3) d (Z + E) 7.43–7.55 (m, 4H); 7.05–7.33 (m, 11H); (Z isomer)
6.33 (s, 1H); (E isomer) 5.30 (s, 1H). MS m/z (rel. int.,%) 312 (M+, 100.0), 202
(99.7), 121 (50.0), 77 (19.5).
References and notes
1. For the synthetic utility of vinyl sulfides, see, for example: (a) Aucagne, V.;
Lorin, C.; Tatibouët, A.; Rollin, P. Tetrahedron Lett. 2005, 46, 4349; (b) Muraoka,
N.; Mineno, M.; Itami, K.; Yoshida, J.-I. . J. Org. Chem. 2005, 70, 6933; (c)
Woodland, C. A.; Crawley, G. C.; Hartley, R. C. Tetrahedron Lett. 2004, 45, 1227;
(d) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104,
2239; (e) Oae, S. Organic Sulfur Chemistry: Structure and Mechanism; CRC Press:
Boca Raton, FL, 1991; Cremlyn, R. J. An Introduction to Organosulfur Chemistry;
Wiley& Sons: New York, 1996.
2. (a) Marcantoni, E.; Massaccesi, M.; Petrini, M. J. Org. Chem. 2000, 65, 4553; (b)
Kuligowski, C.; Bezzenine-Lafollée, S.; Chaume, G.; Mahuteau, J.; Barrière, J.-C.;
Bacqué, E.; Pancrazi, A.; Ardisson, J. J. Org. Chem. 2002, 67, 4565.
3. Lan, H. W.; Cooke, P. A.; Pattenden, G.; Bandaranayake, W. M.;
Wickramasinghe, W. A. J. Chem. Soc., Perkin Trans. 1 1999, 847.
4. Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205; Cao, C.; Fraser, L. R.; Love, J.
A. J. Am. Chem. Soc. 2005, 127, 17614; (b) Weiss, C. J.; Wobser, S. D.; Marks, T. J. J.
Am. Chem. Soc. 2009, 131, 2062; (c) Ogawa, A.; Ikeda, T.; Kimura, K.; Hirao, T. J.
Am. Chem. Soc. 1999, 121, 5108; (d) Malyshev, D. A.; Scott, N. M.; Marion, N.;
Stevens, E. D.; Ananikov, V. P.; Beletskaya, I. P.; Nolan, S. P. Organometalics 2006,
25, 4462.
22. Reuse: To a round-bottomed flask containing 1,4-diphenyl-1,3-butadiyne 1a
(1.0 mmol), benzenethiol 2a (1.0 mmol) and solvent (3 mL) was added Al2O3/
KF. The reaction mixture was allowed to stir at 60 °C (using PEG-400) or at
90 °C (using glycerol) for 1.5 h. After that, the reaction mixture was washed
with
a
mixture of hexane/ethyl acetate (90:10; 3 Â 5 mL) and the upper
organic phase was separated from solvent/KF/Al2O3. The product was isolated
according procedure above. The mixture solvent/KF/Al2O3 was dried under
vacuum and reused for further reactions.
23. Wang, S.-X.; Li, J.-T.; Yang, W.-Z.; Li, T.-S. Ultrason. Sonochem. 2002, 9, 159.