F. Diederich et al.
FULL PAPER
Ratner, T. J. Marks, Chem. Rev. 1994, 94, 195–242; c) J. Y. Lee,
K. S. Kim, B. J. Mhin, J. Chem. Phys. 2001, 115, 9484–9489.
25 °C): δ = 1.29 [t, J = 7.2 Hz, 6 H, N(CH2Me)2], 3.55 [q, J =
7.2 Hz, 4 H, N(CH2Me)2], 6.75 (d, J = 9.6 Hz, 2 H, ArHortho), 7.24
(s, 1 H, C=CH), 7.75 (d, J = 9.6 Hz, 2 H, ArHmeta) ppm. 13C NMR
(75 MHz, CDCl3/CD3CN, 8:2, 25 °C): δ = 12.79, 45.59, 85.51,
111.15, 111.58, 112.59, 112.88, 113.08, 120.68, 125.71, 131.56,
132.74, 152.75 ppm (one signal missing because overlapped with
[7]
a) S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G.
Tiemann, K. Mansour, Science 1993, 261, 186–189; b) S. R.
Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanch-
ard-Desce, J. W. Perry, J. Skindhoj, Science 1994, 263, 511–514;
c) F. Meyers, S. R. Marder, B. M. Pierce, J. L. Brédas, J. Am.
Chem. Soc. 1994, 116, 10703–10714; d) R. R. Tykwinski, M.
Schreiber, V. Gramlich, P. Seiler, F. Diederich, Adv. Mater.
1996, 8, 226–231; e) R. Spreiter, C. Bosshard, G. Knöpfle, P.
Günter, R. R. Tykwinski, M. Schreiber, F. Diederich, J. Phys.
Chem. B 1998, 102, 29–32; f) R. R. Tykwinski, U. Gubler, R. E.
Martin, F. Diederich, C. Bosshard, P. Günter, J. Phys. Chem.
B 1998, 102, 4451–4465; g) M. G. Kuzyk, J. Mater. Chem.
2009, 19, 7444–7465.
CD CN resonances at 116.52). IR (ATR): ν = 2972 (m), 2931 (m),
˜
3
2210 (s), 1607 (s), 1508 (s), 1477 (m), 1420 (m), 1346 (m), 1312 (m),
1296 (m), 1276 (m), 1213 (m), 1192 (m), 1092 (w), 1077 (w), 1009
(w), 961 (m), 901 (m), 856 (m), 830 (s), 797 (m), 746 (m) cm–1. UV/
Vis (CH2Cl2): λmax (ε) 341 (8800), 402 (5500), 442 (3000), 678 nm
(70300 m–1 cm–1). HR-MALDI-MS (3-HPA): calcd. for C18H15N5
–
[M]– 301.1333; found: 301.1329 m/z. C18H15N5 (301.35): calcd. C
71.74, H 5.02, N 23.24; found C 71.65, H 5.07, N 23.27.
[8]
[9]
a) G. Archetti, A. Abbotto, R. Wortmann, Chem. Eur. J. 2006,
12, 7151–7160; b) J. C. May, I. Biaggio, F. Buresˇ, F. Diederich,
Appl. Phys. Lett. 2007, 90, 251106/1–251106/3; c) E. L. Spitler,
L. D. Shirtcliff, M. M. Haley, J. Org. Chem. 2007, 72, 86–96;
d) N. Hebbar, Y. Ramondenc, G. Plé, G. Dupas, N. Plé, Tetra-
hedron 2009, 65, 4190–4200; e) J. Kulhánek, F. Buresˇ, O. Pytela,
T. Mikysek, J. Ludvík, Chem. Asian J. 2011, 6, 1604–1612.
a) P. Nguyen, G. Lesley, T. B. Marder, Chem. Mater. 1997, 9,
406–408; b) G. P. Bartholomew, G. C. Bazan, J. Am. Chem.
Soc. 2002, 124, 5183–5196; c) H. Meier, J. Gerold, H. Kolshorn,
B. Mühling, Chem. Eur. J. 2004, 10, 360–370; d) F. Buresˇ, W. B.
Schweizer, J. C. May, C. Boudon, J.-P. Gisselbrecht, M. Gross,
I. Biaggio, F. Diederich, Chem. Eur. J. 2007, 13, 5378–5387; e)
A. S. Andersson, L. Kerndrup, A. Ø. Madsen, K. Kilså, M. B.
Nielsen, P. R. La Porta, I. Biaggio, J. Org. Chem. 2009, 74, 375–
382; f) Y.-L. Wu, F. Buresˇ, P. D. Jarowski, W. B. Schweizer, C.
Boudon, J.-P. Gisselbrecht, F. Diederich, Chem. Eur. J. 2010,
16, 9592–9605; g) J. Rotzler, D. Vonlanthen, A. Barsella, A.
Boeglin, A. Fort, M. Mayor, Eur. J. Org. Chem. 2010, 1096–
1110.
a) A. P. Chafin, G. A. Lindsay, J. Phys. Chem. C 2008, 112,
7829–7835; b) J. Hung, W. Liang, J. Luo, Z. Shi, A. K.-Y. Jen,
X. Li, J. Phys. Chem. C 2010, 114, 22284–22288; c) J. Luo, S.
Huang, Y.-J. Cheng, T.-D. Kim, Z. Shi, X.-H. Zhou, A. K.-Y.
Jen, Org. Lett. 2007, 9, 4471–4474; d) Y.-J. Cheng, J. Luo, S.
Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi,
A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid,
W. H. Steier, A. K.-Y. Jen, Chem. Mater. 2008, 20, 5047–5054;
e) M. Kivala, C. Boudon, J.-P. Gisselbrecht, B. Enko, P. Seiler,
I. B. Müller, N. Langer, P. D. Jarowski, G. Gescheidt, F. Died-
erich, Chem. Eur. J. 2009, 15, 4111–4123.
P. Reutenauer, M. Kivala, P. D. Jarowski, C. Boudon, J.-P. Gis-
selbrecht, M. Gross, F. Diederich, Chem. Commun. 2007, 4898–
4900.
a) E. Hertel, K. A. Hoffmann, Z. Physik. Chem. 1941, 50B,
382–402; b) K. Staub, G. A. Levina, S. Barlow, T. C. Kowal-
czyk, H. S. Lackritz, M. Barzoukas, A. Fort, S. R. Marder, J.
Mater. Chem. 2003, 13, 825–833.
a) J. K. Williams, D. W. Wiley, B. C. McKusick, J. Am. Chem.
Soc. 1962, 84, 2216–2221; b) B. C. McKusick, R. E. Heckert,
T. L. Cairns, D. D. Coffman, H. F. Mower, J. Am. Chem. Soc.
1958, 80, 2806–2815; c) P. Reutenauer, P. J. Boul, J.-M. Lehn,
Eur. J. Org. Chem. 2009, 1691–1697.
The enhanced solubility is especially important for the synthe-
sis of the strongly dipolar ICT chromophores, see: B. Breiten,
Y.-L. Wu, P. D. Jarowski, J.-P. Gisselbrecht, C. Boudon, M.
Griesser, C. Onitz, G. Gescheidt, W. B. Schweizer, N. Langer,
C. Lennartz, F. Diederich, Chem. Sci. 2011, 2, 88–93; however,
as inferred from the quality of 13C NMR, the solubility of
some target molecules is still poor in chlorinated solvents.
(Z)-8: This compound was synthesized from (Z)-16 (170 mg,
0.51 mmol) following General Procedure A. Flash chromatography
(SiO2; CH2Cl2) gave (Z)-8 (9 mg, 9%) as a green solid. Rf = 0.13
(CH2Cl2); m.p. 187.3–188.1 °C. 1H NMR (300 MHz, CDCl3,
25 °C): δ = 1.36 [t, J = 7.2 Hz, 6 H, N(CH2Me)2], 3.65 [q, J =
7.2 Hz, 4 H, N(CH2Me)2], 6.86 (d, J = 9.6 Hz, 2 H, ArHortho), 7.85
(br. s, 2 H, ArHmeta) ppm. 13C NMR (75 MHz, CDCl3/CD3CN,
8:2, 25 °C): poor quality spectrum because of solubility reasons. IR
(ATR): ν = 2973 (m), 2931 (m), 2212 (s), 1602 (s), 1508 (s), 1471
˜
(w), 1416 (w), 1345 (w), 1308 (m), 1180 (m), 1157 (m), 1094 (w),
1076 (w), 1002 (w), 894 (m), 829 (s), 794 (m), 742 (m) cm–1. UV/
Vis (CH2Cl2): λmax (ε) 259 (6100), 379 (5400), 431 (3800), 698 nm
–
(24500 m–1 cm–1). HR-MALDI-MS (3-HPA): calcd. for C19H14N6
[M]– 326.1285; found: 326.1278 m/z. C19H14N6 (326.36): calcd. C
69.92, H 4.32, N 24.75; found C 69.51, H 4.31, N 24.65.
Supporting Information (see footnote on the first page of this arti-
cle): Details of the syntheses (11–16), UV/Vis measurements (in-
cluding oscillator strength and transition dipole moment), electro-
[10]
1
chemsitry (13–16), X-ray data, DFT calculations, and H and 13C
NMR spectra of new compounds.
Acknowledgments
The work at the Eidgenössische Technische Hochschule (ETH) was
supported by European Commision through an ERC Advanced
Grant No. 246637 (OPTELOMAC). The authors are grateful for
access to the high-performance Brutus computer cluster (ETH).
Y.-L. W. acknowledges finacial support by the Stipendienfonds der
Schweizerischen Chemischen Industrie (SSCI).
[11]
[12]
[1] R. Gompper, H.-U. Wagner, Angew. Chem. 1988, 100, 1492–
1511; Angew. Chem. Int. Ed. Engl. 1988, 27, 1437–1455.
[2] a) M. Kivala, F. Diederich, Acc. Chem. Res. 2009, 42, 235–248;
b) S.-i. Kato, F. Diederich, Chem. Commun. 2010, 46, 1994–
2006; c) J. Roncali, P. Leriche, A. Cravino, Adv. Mater. 2007,
19, 2045–2060.
[3] a) For a special issue on organic electronics, see: J. Mater. Res.
2004, 19, 1887–2203, edited by F. Faupel, C. Dimitrakopoulos,
A. Kahn, C. Wöll; b) for a special issue on organic electronics
and opto-electronics, see: Chem. Rev. 2007, 107, 923–1386, ed-
ited by S. R. Forrest, M. E. Thompson; c) for a special issue
on materials for electronics, see: Chem. Rev. 2010, 110, 1–574,
edited by R. D. Miller, E. A. Chandross.
[4] S. Barlow, S. R. Marder, in: Functional Organic Materials (Eds.:
T. J. J. Müller, U. H. F. Bunz), Wiley-VCH, Weinheim, Ger-
many, 2007, pp. 393–437.
[5] L. R. Dalton, J. Phys. Condens. Matter 2003, 15, R897–R934.
[6] a) D. M. Burland, R. D. Miller, O. Reiser, R. J. Twieg, C. A.
Walsh, J. Appl. Phys. 1992, 71, 410–417; b) D. R. Kanis, M. A.
[13]
[14]
[15]
[16]
A. D. Josey, C. L. Dickenson, K. C. Dewhirst, B. C. McKusic,
J. Org. Chem. 1967, 32, 1941–1944.
a) W. J. Linn, Organic Syntheses 1973, Coll. Vol. 5, 1973, 1007–
1011; Org. Synth. 1969, 49, 103–107; b) C. L. Dickenson, D. W.
2764
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 2756–2765