1 R. E. Schwartz, C. F. Hirsch, D. F. Sesin, J. E. Flor, M. Chartrain,
R. E. Fromtling, G. H. Harris, M. J. Salvatore, J. M. Liesch and
K. Yudin, J. Ind. Microbiol., 1990, 5, 113.
2 T. Golakoti, I. Ohtani, G. M. Patterson, R. E. Moore,
T. H. Corbett, F. A. Valeriote and L. Demchik, J. Am. Chem.
Soc., 1994, 116, 4729.
3 N. A. Magarvey, Z. Q. Beck, T. Golakoti, Y. Ding, U. Huber,
T. K. Hemscheidt, D. Abelson, R. E. Moore and D. H. Sherman,
ACS Chem. Biol., 2006, 1, 766.
4 C. D. Smith, X. Zhang, S. L. Mooberry, G. M. L. Patterson and
R. E. Moore, Cancer Res., 1994, 54, 3779.
Scheme 3 Hydrolysis of methyl esters 10a–d to acids 13a–d.
5 C. Shih and B. A. Teicher, Curr. Pharm. Des., 2001, 7, 1259.
6 M. M. Wagner, D. C. Paul, C. Shih, M. A. Jordan, L. Wilson and
D. C. Williams, Cancer Chemother. Pharmacol., 1999, 43, 115.
7 S. Eisler, A. Stonicus, M. Nahrwold and N. Sewald, Synthesis,
2006, 22, 3747.
8 M. Eggen and G. I. Georg, Med. Chem. Rev., 2002, 22, 85.
9 V. F. Patel, S. L. Andis, J. H. Kennedy, J. E. Ray and R. M. Schultz,
J. Med. Chem., 1999, 42, 2588.
10 D. L. Varie, C. Shih, D. A. Hay, S. L. Andis, T. H. Corbett, L. S.
Gossett, S. K. Janisse, M. J. Martinelli, E. D. Moher, R. M. Schultz and
J. E. Toth, Bioorg. Med. Chem. Lett., 1999, 9, 369.
11 C. Shih, L. S. Gossett, J. M. Gruber, C. S. Grossman, S. L. Andis,
R. M. Schultz, J. F. Worzalla, T. H. Corbett and J. T. Metz,
Bioorg. Med. Chem. Lett., 1999, 9, 69.
12 R. S. Al-awar, J. E. Ray, R. M. Schultz, S. L. Andis, J. H. Kennedy,
R. E. Moore, J. Liang, T. Golakoti, G. V. Subbaraju and T. H. Corbett,
J. Med. Chem., 2003, 46, 2985.
13 M. Eggen, C. J. Mossman, S. B. Buck, S. K. Nair, L. Bhat,
S. M. Ali, E. A. Reiff, T. C. Boge and G. I. Georg, J. Org. Chem.,
2000, 65, 7792.
analogues 10a–d in good yield regardless of the presence of
electron donating or withdrawing substituents (Table 3).32
Reactivity could also be achieved with aryl bromides and
chlorides with increased heating times and temperatures,
proving this Suzuki-Miyaura route to be the most efficient
for future analogue generation.
With effective elaboration of 8 via Heck reaction, CM, and
Suzuki-Miyaura coupling, the remaining transformation
involved hydrolysis of diverse methyl esters 10a–d to the acids
13a–d. This was accomplished with LiOH in a 1 : 1 : 0.5
mixture of methanol/water/tetrahydrofuran (Scheme 3). The
presence of the free acid now allows attachment of these
novel unit A analogues to linear depsipeptide precursors of
cryptophycin.33
In summary, we have established a short and efficient
synthesis to intermediate 8 (4 steps, 34% overall yield) from
which flexible coupling methods, particularly Suzuki-Miyaura
cross coupling, provide access to a broad range of phenyl or
more highly functionalised aromatic moieties in the synthesis
of unit A analogues. With this strategy in place, the remaining
objective involves coupling of the analogues to units B, C,
and D to generate seco-cryptophycin intermediates. Our
laboratory has previously demonstrated that solid phase
synthesis34 followed by Crp thioesterase and epoxidase-
mediated chemoenzymatic assembly3,35,36 enable rapid production
of cryptophycin anticancer agents. We expect the versatile unit A
synthetic strategy reported herein will open new opportunities
to produce unique cryptophycin analogues for on-going drug
development efforts.
14 I. S. Kim, M.-Y. Ngai and M. J. Krische, J. Am. Chem. Soc., 2008,
130, 14891.
15 I. S. Kim, S. B. Han and M. J. Krische, J. Am. Chem. Soc., 2009,
131, 2514.
16 S. B. Han, X. Gao and M. J. Krische, J. Am. Chem. Soc., 2010,
132, 9153.
17 B. Bechem, R. L. Patman, A. S. K. Hashmi and M. J. Krische,
J. Org. Chem., 2010, 75, 1795.
18 A. Hassan and M. J. Krische, Org. Process Res. Dev., 2011,
15, 1236.
19 U. P. Dhokte, V. V. Khau, D. R. Hutchinson and M. J. Martinelli,
Tetrahedron Lett., 1998, 39, 8771.
20 P. G. McDougal, J. G. Rico, Y.-I. Oh and B. D. Condon, J. Org.
Chem., 1986, 51, 3388.
21 J. A. Dale and H. S. Mosher, J. Am. Chem. Soc., 1973, 95, 512.
22 T. R. Hoye, C. S. Jeffrey and F. Shao, Nat. Protoc., 2007, 2, 2451.
23 J.-M. Vatele, Tetrahedron Lett., 2006, 47, 715.
24 R. Vidya, M. Eggen, G. I. Georg and R. H. Himes, Bioorg. Med.
Chem. Lett., 2003, 13, 757.
25 C. Gurtler and S. L. Buchwald, Chem.–Eur. J., 1999, 5, 3107.
26 W. Kleist, S. S. Prockl and K. Kohler, Catal. Lett., 2008, 125, 197.
27 G. Moura-Letts and D. P. Curran, Org. Lett., 2007, 9, 5.
28 T. W. Funk, J. Efskind and R. H. Grubbs, Org. Lett., 2005, 7, 187.
29 A. K. Chatterjee, T.-L. Choi, D. P. Sanders and R. H. Grubbs,
J. Am. Chem. Soc., 2003, 125, 11360.
30 A. K. Ghosh and J. Li, Org. Lett., 2011, 13, 66.
31 K. C. Nicolaou, A. Li, D. J. Edmonds, G. S. Tria and S. P. Ellery,
J. Am. Chem. Soc., 2009, 131, 16905.
32 N. Kudo, M. Perseghini and G. C. Fu, Angew. Chem., Int. Ed.,
2006, 45, 1282.
We are grateful to Russell L. Betts, PhD and Jeffrey D.
Kittendorf, PhD of Alluvium Biosciences for expert technical
assistance and helpful discussion. Karoline Chiou is thanked
for QTOF-MS analysis. This work was supported by NIH
grant RO1 CA108874 and the Hans W. Vahlteich Professorship
(to DHS). Additional financial support for this work was provided
by an NIH Phase I STTR grant (R41CA135869) awarded to
Alluvium Biosciences and a Fred W. Lyons Fellowship and a
Rackham Graduate Research grant (to KLB).
33 Z. Q. Beck, C. C. Aldrich, N. A. Magarvey, G. I. Georg and
D. H. Sherman, Biochemistry, 2005, 44, 13457.
34 W. Seufert, Z. Q. Beck and D. H. Sherman, Angew. Chem., Int.
Ed., 2007, 46, 9298.
35 Y. Ding, W. H. Seufert, Z. Q. Beck and D. H. Sherman, J. Am.
Chem. Soc., 2008, 130, 5492.
36 Y. Ding, C. M. Rath, K. L. Bolduc, K. Hakansson and
D. H. Sherman, J. Am. Chem. Soc., 2011, 133, 14492.
Notes and references
z The MTPA ester was synthesised from purified
6 using
(S)-(+)-MTPA acid chloride in anhydrous pyridine at 60 1C for
24 h. The 19F NMR spectra of esters prepared from 6 and its
enantiomer (from (S)-(ꢀ)ꢀ5) were compared to determine the er
(Supporting Informationw).
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.