10.1002/ange.202005183
Angewandte Chemie
COMMUNICATION
Synthesis of 1: FDP (1) was synthesized from commercial (2E,6E)-
farnesol using the method described by Davisson.[35] 12-Hydroxy FDP (12-
OH-FDP) was synthesized from commercial (2E,6E)-farnesol using the
method of Demiray et al.[26c]
Acknowledgements
We thank BioExtractions (Wales), the KESS 2 program (M. T.)
and the School of Chemistry, Cardiff University (PhD studentship
to F. H.), for financial support. Knowledge Economy Skills
Scholarships (KESS) is a pan-Wales higher level skills initiative
led by Bangor University on behalf of the HE sector in Wales. It is
part funded by the Welsh Government’s European Social Fund
(ESF) convergence programme for West Wales and the Valleys.
We are grateful to Dr. R. L. Jenkins and T. Williams for assistance
with mass spectrometry and gas chromatography. We thank T.
Drevon for rendering Figs. 1 and 5c–d.
General procedure for biocatalysis using HPCCC: All experiments were
performed on a Dynamic Extractions SpectrumTM instrument (Slough, UK)
fitted with an analytical scale column with a volume of 22 mL (0.8 mm I.D.
PTFE tubing) and a revolution radius of 85 mm. Semi-preparative scale
experiments used a column with a volume of 135 mL (1.6 mm I.D. of 1.6
mm PTFE tubing) and a revolution radius of 85 mm. Aqueous and organic
phases circulated with two HPLC pumps (ECOM ECP 2010) at 28 ºC. The
column was initially filled with pentane (HPLC grade, Sigma-Aldrich) at 6
mL•min–1 from tail periphery to head-centre. The column was then loaded
through a loop with 10 mL AS incubation buffer (20 mM Tris-base, 3 mM
MgCl2, pH 7.5) containing 6 µM AS and 0.35 mM FDP at a flow rate of
2 mL•min–1 resulting in 10 mL of pentane being displaced from the column.
The instrument was rotated at 1600 rpm and pentane was pumped from
tail periphery to head-centre at a flow rate of 2 mL•min–1. The pentane was
collected in 5 mL fractions and analysed by GC. The yield was calculated
by comparing peak areas of the product to a calibration curve using a-
humulene.
Keywords: Biocatalysis • Biphasic reaction • HPCCC • Phase-
transfer catalysis • Terpenoids
[15] a) B. Ahmed-Omer, D. Barrow, T. Wirth, Chem. Eng. J. 2008,
135S, S280–S283; b) M. Ueno, H. Hisamoto, T. Kitamori, S.
Kobayashi, Chem. Commun. 2003, 936–937.
[1] A. Tanimu, S. Jaenicke, K. Alhooshani, Chem. Eng. J. 2017, 327,
792–821.
[16] M. Yoo, B. Jeong, J. Lee, H. Park, S. Jew, Org. Lett. 2005, 7,
1129–1131.
[2] T. A. Bender, J. A. Dabrowski, M. R. Gagné, Nat. Rev. Chem.
2018, 2, 35–46.
[17] B. Lygo, P. G. Wainwright, Tetrahedron 1999, 55, 6289–6300.
[18] T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125,
5139–5151.
[3] a) Novel Process Windows, Eds. V. Hessel, D. Kralisch, N.
Kockmann, Wiley-VCH, 2015; b) V. Hessel, Chem. Eng. Technol.
2009, 32, 1655–1681; c) V. Hessel, P. Löb, U. Krtschil, H. Löwe in
New Avenues to Efficient Chemical Synthesis, Eds. P. Seeberger,
T. Blume, Ernst Schering Foundation Symposium Proceedings,
Springer, Berlin, 2006, 205–240.
[19] O. R. Bousquet, J. Braun, F. Le Goffic, Tetrahedron Lett. 1995, 36,
8195–8196.
[20] C. Nioi, D. Riboul, P. Destrac, A. Marty, L. Marchal, J. S. Condoret,
Biochem. Engin. J. 2015, 103, 227–233.
[4] J. Yoshida, A. Nagaki, T. Iwasaki, S. Suga, Chem. Eng. Technol.
2005, 28, 259–266.
[21] R. N. Patel, A. Banerjee, V. Nanduri, A. Goswami, F. T.
Comezoglu, J. Am. Oil Chem. Soc. 2000, 77, 1015–1019.
[22] J. Chappell, R. M. Coates, in Comprehensive Natural Products II,
Vol. 1, Eds.: L. Mander, H.-W. Liu, Elsevier, 2010, pp. 609–641.
[23] a) R. K. Allemann, Pure Appl. Chem. 2008, 80, 1791–1798; b) D.
J. Miller, R. K. Allemann, Nat. Prod. Rep. 2012, 29, 60–71.
[24] a) K. Foo, I. Usui, D. C. G. Götz, E. W. Werner, D. Holte, P. S.
Baran, Angew. Chem. Int. Ed. 2012, 51, 11491–11495; b) D.
Holte, D. C. Götz, P. S. Baran, J. Org. Chem. 2012, 77, 825–842;
c) T. J. Maimone, P. S. Baran, Nat. Chem. Biol. 2007, 3, 396–407;
d) Q. Zhang, L. Catti, J. Pleiss, K. Tiefenbacher, J. Am. Chem.
Soc. 2017, 139, 11482–11492.
[5] H. Kim, K.-I. Min, K. Inoue, D. J. Im, D.-P. Kim, J. Yoshida,
Science 2016, 352, 691–694.
[6] A. Berthod, K. Faure, in Analytical Separation Science, Eds. J. L.
Anderson, A. Berthod, V. P. Estévez, A. M. Stalcup, Wiley-VCH,
2015, 1177–1206.
[7] First report on HPCCC: a) Y. Ito, M. Weinstein, I. Aoki, R. Harada,
E. Kimura, K. Nunogaki, Nature 1966, 212, 985–987; Selected
recent references: b) A. Berthod, T. Maryutina, B. Spivakov, O.
Shpigun, I. A. Sutherland, Pure Appl. Chem. 2009, 81, 355–387; J.
B. Friesen, J. B. McAlpine, S.-N. Chen, G. F. Pauli, J. Nat. Prod.
2015, 78, 1765–1796.
[25] D. S. Reddy, E. J. Corey, J. Am. Chem. Soc. 2018, 140, 16909–
16913.
[8] A. Berthod, Comprehensive Analytical Chemistry, Elsevier,
Amsterdam 2002, 38, 1-20.
[26] a) F. Huynh, D. J. Grundy, R. L. Jenkins, D. J. Miller, R. K.
Allemann, ChemBioChem 2018, 19, 1834–1838; b) C.
Oberhauser, V. Harms, K. Seidel, B. Schröder, K. Ekramzadeh, S.
Beutel, S. Winkler, L. Lauterbach, J. S. Dickschat, A. Kirschning,
Angew. Chem. Int. Ed. 2018, 57, 11802–11806; c) M. Demiray, X.
Tang, T. Wirth, J. A. Faraldos, R. K. Allemann, Angew. Chem. Int.
Ed. 2017, 56, 4347–4350; d) K. A. Rising, C. M. Crenshaw, H. J.
Koo, T. Subramanian, K. A. H. Chehade, C. Starks, K. D. Allen, D.
A. Andres, H. P. Spielmann, J. P. Noel, J. Chappell, ACS Chem.
Biol. 2015, 10, 1729–1736; e) S. Touchet, K. Chamberlain, C. M.
Woodcock, D. J. Miller, M. A. Birkett, J. A. Pickett, R. K. Allemann,
Chem. Commun. 2015, 51, 7550–7553; f) Y.Jin, D. C. Williams, R.
Croteau, R. M. Coates, J. Am. Chem. Soc. 2005, 127, 7834–7842.
[27] a) D. E. Cane, H.-T. Chiu, P.-H. Liang, K. S. Anderson,
Biochemistry 1997, 36, 8332–8339; b) J. R. Mathis, K. Back, C.
Starks, J. Noel, C. D. Poulter, J. Chappell, Biochemistry 1997, 36,
8340–8348.
[9] K. Skalicka-Woźniak, I. K. Garrard, Phytochem. Rev. 2014, 13,
547–572.
[10] a) N. Assmann, P. R. von Rohr, Chem. Engin. Proc. 2011, 50,
822–827; b) K. Benz, K.-P. Jäckel, K.-J. Regenauer, J. Schiewe,
K. Drese, W. Ehrfeld, V. Hessel, H. Löwe, Chem. Eng. Technol.
2001, 24, 11–17; d) J. R. Burns, C. Ramshaw, Lab Chip 2001, 1,
10–15.
[11] a) S. K. Kurt, I. V. Gürsel, V. Hessel, K. D. P. Nigam, N.
Kockmann, Chem. Engin. J. 2016, 284, 764–777; b) I. V. Gürsel,
S. K. Kurt, J. Aalders, Q. Wang, T. Noël, K. D. P. Nigam, N.
Kockmann, V. Hessel, Chem. Engin. J. 2016, 283, 855–868.
[12] a) H. Chen, J. Chen, T. Tang, H. Chen, L. Xie, A. Peng, L. Chen,
G. Yin, J. Chromatogr. A 2020, 1620, 460983; b) F. Wang, Y. Ito,
Y. Wei, J. Liq. Chromatogr. Relat. Technol. 2015, 38, 415–421.
̧
[13] M. Makosza, Tetrahedron Lett. 1966, 7, 5489–5492.
[14] S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52, 4312–
4348.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.