Conclusions
In conclusion, chemical ligation via O- to N-acyl transfer with 8-
and 11-membered transition states occurs successfully without
the use of either cysteine or an auxiliary group. The reactivity of
O-acyl peptides in traceless chemical ligation reactions is sup-
ported by theoretical and computational studies. Further ligation
investigations on other sized transition states as well as ligations
via threonine are ongoing in our laboratory.
Acknowledgements
We thank the University of Florida, The Kenan Foundation,
King Abdulaziz University, Jeddah, Saudi Arabia and the Higher
Education Commission, Pakistan for financial support. The
authors thank Kind Abdulaziz University for support of this
research by grant number 24-3-1432/HiCi. We thank
Dr C. D. Hall for helpful discussions, Dr J. Johnson for his help
in HLPC-MS analyses, Dr M. C. A. Dancel for her help with
HRMS analyses.
Fig. 2 Preorganised conformer of O-acyl peptide 4a.
Notes and references
1 (a) S. B. H. Kent, Chem. Soc. Rev., 2009, 38, 338; (b) R. B. Merifield,
Science, 1984, 232, 341; (c) E. T. Kaiser, Acc. Chem. Res., 1989, 22, 47.
2 (a) P. E. Dawson, T. W. Muir, I. Clark-Lewis and S. B. H. Kent, Science,
1994, 266, 776; (b) A. El-Faham and F. Albericio, Chem. Rev., 2011,
111, 6557–6602.
3 D. S. Y. Yeo, R. Srinivasan, G. Y. J. Chen and S. Q. Yao, Chem.–Eur. J.,
2004, 10, 4664.
4 B. Bacsa, S. Bősze and C. O. Kappe, J. Org. Chem., 2010, 75, 2103.
5 (a) Y. Sohma, T. Yoshiya, A. Taniguchi, T. Kimura, Y. Hayashi and
Y. Kiso, Biopolymers, 2007, 88, 253; (b) S. Sakakibarka, K. H. Shin and
G. P. Hess, J. Am. Chem. Soc., 1962, 84, 4921.
6 T. Wieland, E. Bokelmann, L. Bauer, H. U. Lang, H. Lau and W. Schafer,
Justus Liebigs Ann. Chem., 1953, 583, 129.
7 X. Li, H. Y. Lam, Y. Zhang and C. K. Chan, Org. Lett., 2010, 12, 1724.
8 B. L. Nilsson, L. L. Kiessling and R. T. Raines, Org. Lett., 2000, 2,
1939.
9 B. L. Nilsson, L. L. Kiessling and R. T. Raines, Org. Lett., 2001, 3, 9.
10 (a) J. A. Restituyo, L. R. Comstock, S. G. Petersen, T. Stringfellow and
S. R. Rajski, Org. Lett., 2003, 5, 4357; (b) C. P. R. Hackenberger and
D. Schwarzer, Angew. Chem., Int. Ed., 2008, 47, 10030 and references
within; (c) R. Okamoto and Y. Kajihara, Angew. Chem., Int. Ed., 2008,
47, 5402; (d) D. Macmillan, Angew. Chem., Int. Ed., 2006, 45, 7668.
11 H. Hojo, C. Ozawa, H. Katayama, A. Ueki, Y. Nakahara and
Y. Nakahara, Angew. Chem., Int. Ed., 2010, 49, 5318.
12 D. Macmillan and D. W. Anderson, Org. Lett., 2004, 6, 4659.
13 T. Kawakami and S. Aimoto, Tetrahedron Lett., 2003, 6059.
14 J. Offer, C. N. C. Boddy and P. E. Dawson, J. Am. Chem. Soc., 2002,
124, 4642.
15 P. Botti, M. R. Carrasco and S. B. H. Kent, Tetrahedron Lett., 2001,
1831.
16 B. Wu, J. Chen, J. D. Warren, G. Chen, Z. Hua and S. J. Danishefsky,
Angew. Chem., Int. Ed., 2006, 45, 4116.
17 A. R. Katritzky, N. E. Abo-Dya, S. R. Tala and Z. K. Abdel-Samii, Org.
Biomol. Chem., 2010, 8, 2316.
18 A. R. Katritzky, S. R. Tala, N. E. Abo-Dya, T. S. Ibrahim, S. A. El-Feky,
K. Gyanda and K. M. Pandya, J. Org. Chem., 2011, 76, 85.
19 A. A. Oliferenko and A. R. Katritzky, Org. Biomol. Chem., 2011, 9, 4756.
20 M. El Khatib, L. Jauregui, S. R. Tala, L. Khelashvili and A. R. Katritzky,
Med. Chem. Commun., 2011, 2, 1087, and references within.
21 Y. Sohma, M. Sasaki, Y. Hayashi, T. Kimura and Y. Kiso, Chem.
Commun., 2004, 124.
22 (a) A. R. Katritzky, D. Jishkariani and T. Narindoshvili, Chem. Biol.
Drug Des., 2009, 73, 618; (b) A. R. Katritzky, M. El Khatib,
O. Bol’shakov, L. Khelashvili and P. J. Steel, J. Org. Chem., 2010, 75,
6532.
Fig. 3 Geometry optimized conformer of O-acyl peptide 4A.
PCModel and MMX force field were used for scanning all rota-
table bonds).19
As the O- to N-shift reaction occurs in the presence of piper-
idine, we believe general basic catalysis may be involved.
For calculation purposes this means that piperidine scavenges
one proton of the free amino group in structure 4a. We mimic
the catalysis conditions by removing the proximal hydrogen
atom from the N-terminus. To probe the reactivity, the preorga-
nized deprotonated structure 4A was subjected to geometry
optimization at the HF/6-31+G* level of theory.
The quantum chemical reaction energy Ereact is defined as
react = E2 − E1, where E1 and E2 are the energies of the starting
E
and final, geometry-optimised structures, respectively. Geometry
optimization resulted in Ereact = −61.74 kcal mol−1, which is
about 33 kcal mol−1 more favorable than the previously studied
S-acyl structure. The optimized structure is shown in Fig. 3.
Although the optimized structure does not show the ligation
completed, the cyclic transition state looks rather more organized
than in the corresponding S-acyl structure (Fig. 2b in ref. 19).
An apparent reason for that is the close hydrogen bond contact
made between the Phe donor nitrogen and the Gly donor NH,
with the NH⋯N distance of 1.91 Å. This explains the additional
stabilization of structure 4A as well as the higher yield of the
internal ligation product 5a.
23 A. R. Katritzky, A. A. Shestopalov and K. Suzuki, Arkivoc, 2005, vii, 36.
4838 | Org. Biomol. Chem., 2012, 10, 4836–4838
This journal is © The Royal Society of Chemistry 2012