5106
References and Notes
1) S. Omura, H. Tanaka, R. Oiwa, J. Awaya, R. Masuma, K. Tanaka, J. Antibiot., 30, 908 (1977); N.
Imamura, K. Kakinuma, N. Ikekawa, H. Tanaka, S. Omura, J. Antibiot., 34, 1517 (1981).
2) P. Kricke, Ph.D. Thesis, University G6ttingen 1984.
3) a) T. Matsumoto, M. Katsuki, K. Suzuki, Tetrahedron Lett., 29, 6935 (1988); b) T. Matsumoto, M.
Katsuki, H. Jona, K. Suzuki, ibid., 30, 6185 (1989).
4) The antibiotic activity against Gram-positive bacteria of fridamycin E is stronger than the other
components with C-glycoside structures. See ref. 2.
5) Total synthesis of the enantiomer of I was reported: K. Krohn, W. Baltus, Tetrahedron, 44, 49 (1988).
6) M. Schlosser, Pure Appl. Chem., 60, 1627 (1988); M. Schlosser, J. Organomet. Chem., 8, 9 (1967);
L. Lochmann, J. Pospisil, D. Lim, Tetrahedron Lett., 1966, 257.
7) Use of two equivalents of both bases is essential for the completion of the metallation, s~ T. Matsumoto,
H. Kakigi, K. Suzuki, Tetrahedron Letters, in press.
8) All new compounds were fully characterized by 1H NMR (400 MHz), IR, and HRMS.
9)
H.W. Gschwend, H. R. Rodriguez, Org. React., 26, 1 (1979).
10) For the successful tin-lithium exchange, use of toluene as the solvent was essential, since the alkyl anion
attacked the C(9)/C(10)-position in ether or THF. MeLi gave better results than BuLi.
11) (S)-Aldehyde 6 was prepared from (S)-acid 14, which is available in optically pure form. Tr~Sugai, H.
Kakeya, H. Ohta, J. Org. Chem., 55, 4643 (1990).
~ ¢
H02C*~Ia~
Mt~'OBn
14
l) LAH lEt2O, 0 °C (99%)
2) Swem Oxidn. (96%)
OHC~..~.~
~ " ~
~
Me41r~OBnv
. /
6
12) K. Horita, T. Yoshioka, T. Tanaka, Y. Oikawa, O. Yonemitsu, Tetrahedron, 42, 3021 (1986).
13) R.E. Claus, S. L. Schreiber in Organic Synthesis, A. S. Kende, Ed., Wiley: N. Y., 64, 150 (1985).
14) Use of sodium dithionite turned out to be less effective in terms of reproducibility in this case. Cf. K.
Krohn, Tetrahedron, 46, 291 (1990).
15) 13:[c¢]28D -12° (c 0.80, CHC13); 1H NMR 8 (CDC13) 13.18 (s, 1H), 12.67 (s, 1H), 7.84 (dd, 1H, J
7.7, J2 = 1.0 Hz), 7.81 (d, 1H, J = 7.7 Hz), 7.70 (d, 1H, J = 7.7 Hz), 7.68 (dd, 1H, J1 = 8.1, J2 =
7.7 Hz), 7.32 (dd, 1H, J1 = 8.1, J2 = 1.0 Hz), 3.8 - 4.0 (br, 1H), 3.72 (s, 3H), 3.10 (d, 1H, J = 13.7
Hz), 3.04 (d, 1H, J = 13.7 Hz), 2.59 (d, 1H, J = 16.2 Hz), 2.55 (d, 1H, J = 16.2 Hz), 1.31 (s, 3H);
13C NMR 8 (CDC13) 188.3, 187.8, 173.3, 162.7, 161.4, 139.7, 136.6, 134.6, 133.2, 131.8, 125.0,
119.4, 118.9, 116.1, 115.6, 71.8, 51.7, 44.4, 40.5, 27.3; IR (neat) 3540, 2970, 1730, 1630, 1600,
1580, 1430, 1375, 1320, 1260, 1080, 790 cm-1; HRMS m/z 352.0976 (352.0946 calcd for C20H1606,
M+-H20).
16) P.G. Gassman, W. N. Schenk, J. Org. Chem., 42, 918 (1977).
17) 1:[(x]27D +8.9° (c 1.1, dioxane); mp. 164-165 °C (methanol); 1H NMR 8 (d6-DMSO) 12.8 - 13.2 (br,
1H), 12.5 (s, 1H), 11.8 - 12.3 (br, 1H), 7.84 (dd, 1H, J1 = 8.1, J2 = 7.7 Hz), 7.83 (d, 1H, J = 7.9
Hz), 7.78 (dd, 1H, J1 = 7.7, J2 = 1.3 Hz), 7.73 (d, 1H, J = 7.9 Hz), 7.42 (dd, 1H, J1 = 8.1, J2 = 1.3
Hz), 3.08 (d, 1H, J = 13.1 Hz), 2.90 (d, 1H, J = 13.1 Hz), 2.41 (s, 2H), 1.19 (s, 3H); 13C NMR
(d8-dioxane) 189.2, 188.7, 173.8, 163.1, 161.8, 140.2, 137.0, 135.5, 134.4, 132.6, 125.0, 119.3,
118.8, 117.2, 116.4, 71.9, 45.2, 40.7, 27.1; IR (KBr) 3440, 2940, 1700, 1630, 1605, 1580, 1430,
1375, 1315, 1270, 790 cm-1; HRMS m/z 357.0973 (357.0973 calcd for C19H1707, M++I).
(Received in Japan 16 May 1991; accepted 17 June 1991)