Mendeleev Commun., 2012, 22, 148–149
Table 3 Catalytic systems for synthesis of 4c.
Catalyst (mol%) Solvent T/°C Time/h Yield (%) Reference
Table 1 Optimization of reaction conditions.a
Entry
Cat. (mol%)
T/°C
Time/h
Yield (%)b
1
2
3
4
5
6
7
8
9
10
10
10
10
10
0
25
45
60
80
100
80
80
80
80
80
5
5
3
2
2
5
5
1.5
1.5
1.5
Knoevenagel product
Incomplete
89
90
Alum (10)
Alum (10)
Et3N (200)
EtOH–H2O 60
EtOH–H2O 25
EtOH reflux
80
5
24
4
63
53
60
90
7
7
13(a)
This work
[BDDMA]Cl (15) H2O
1.5
89
Knoevenagel product
5
85
90
87
88
This work was supported by the National Natural Science
Foundation of China (grant nos. 21072077 and 20672046)
and the Guangdong Natural Science Foundation (grant nos.
10151063201000051 and 8151063201000016).
15
20
25
10
a The reaction was carried out with acenaphthenequinone 1 (1 mmol), malono-
nitrile 2 (1 mmol), 4-hydroxycoumarin 3c (1 mmol) and [BDDMA]Cl as
catalyst in water (5 ml). b Isolated yield of 4c.
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2012.05.012.
Table 2 Synthesis of spiroacenaphthylene derivatives 4.a
References
Entry Compound 3 Product Time/h Yield (%)b Mp/°C
1 D. C. Rideout and R. Breslow, J. Am. Chem. Soc., 1980, 102, 7816.
1
2
3
4
5
6
7
8
9
3a
3b
3c
3d
3e
3f
3g
3h
3i
4a
4b
4c
4d
4e
4f
4g
4h
4i
1
1
1.5
1
2
2
3
2
2
89
80
90
89
75
77
66
92
75
92
79
71
256–2578
242–2448
>300
2
(a) S. Minakata and M. Komatsu, Chem. Rev., 2009, 109, 711; (b)A. Libineau,
J. Auge and Y. Queneau, Synthesis, 1994, 741; (c) K. Kumaravel and
G. Vasuki, Curr. Org. Chem., 2009, 13, 1820; (d) H. Mecadon, M. R.
Rohman, M. Rajbangshi and B. Myrboh, Tetrahedron Lett., 2011, 52,
2523; (e) Z. H. Zhang, H. Y. Lu, S. H. Yang, and J. W. Gao, J. Comb.
Chem., 2010, 12, 643.
>300
234–236
201–203
183–186
264–266
159–161
215–217
172–17413(a)
194–196
3 R. Pradhan, M. Patra, A. K. Behera, B. K. Mishrab and R. K. Beheraa,
Tetrahedron, 2006, 62, 779.
4 (a) L. L. Andreani and E. Lapi, Bull. Chim. Farm., 1960, 99, 583;
(b) L. Bonsignore, G. Loy, D. Secci and A. Calignano, Eur. J. Med.
Chem., 1993, 28, 517; (c) G. R. Green, J. M. Evans and A. K. Vong, in
Comprehensive Heterocyclic Chemistry II, eds.A. R. Katritzky, C. W. Rees
and E. F. V. Scriven, Pergamon Press, Oxford, 1995, vol. 5, p. 469.
5 S. L. Zhu, S. J. Ji, K. Zhao andY. Zhang, Lett. Org. Chem., 2008, 5, 319.
6 A. Dandia, A. K. Jain and D. S. Bhati, Synth. Commun., 2011, 41, 2905.
7 A. R. Karimi and F. Sedaghatpour, Synthesis, 2010, 10, 1731.
8 M. Dabiri, M. Bahramnejad and M. Baghbanzadeh, Tetrahedron, 2009,
65, 9443.
10
11
12
3j
3k
3l
4j
4k
4l
2
3
4
a Reaction conditions: acenaphthenequinone 1 (1 mmol), malononitrile 2
(1 mmol), a-methylenecarbonyl compounds 3 (1 mmol), [BDDMA]Cl
(15 mol%) as catalyst, water (5 ml), 80°C. b Isolated yield.
9 G. Shanthi, G. Subbulakshmi and P. T. Perumal, Tetrahedron, 2007, 63,
2057.
10 Y. L. Li, H. Chen, C. L. Shi, D. Q. Shi and S. J. Ji, J. Comb. Chem.,
2010, 12, 231.
(Table 2). Reactions with various substrates 3 including 1,3-di-
ketones and pyrazolones proceeded smoothly to furnish the cor-
responding products 4. All the substrates afford good to excellent
yields in short time, and among the products, compounds 4e–j,l
are new spiroacenaphthylene derivatives.
11 R. Sridhar, B. Srinivas, B. Madhav, V. P. Reddy, Y. V. D. Nageswar and
K. R. Rao, Can. J. Chem., 2009, 87, 1704.
12 L. M. Wang, N. Jiao, J. Qiu, J. J. Yu, J. Q. Liu, F. L. Guo and Y. Liu,
Tetrahedron, 2010, 66, 339.
13 (a) M. Saeedi, M. M. Heravi, Y. S. Beheshtiha and H. A. Oskooie,
Tetrahedron, 2010, 66, 5345; (b) A. Nandakumar, P. Thirumurugan,
P. T. Perumal, P. Vembu, M. N. Ponnuswamy and P. Ramesh, Bioorg.
Med. Chem. Lett., 2010, 20, 4252.
14 (a) S. G. Zlotin and N. N. Makhova, Mendeleev Commun., 2010, 20, 63;
(b) S. G. Zlotin and N. N. Makhova, Usp. Khim., 2010, 79, 603 (Russ.
Chem. Rev., 2010, 79, 543).
Then we chose the reaction of acenaphthenequinone 1,
malononitrile 2 and 4-hydroxycoumarin 3c to further examine
the reusabilities of [BDDMA]Cl. After filtering, the catalyst con-
tained in the filtrate could be directly used in the subsequent run
without further treatment under the mentioned conditions. The
yield of product 4c was 89, 90, 90, 89 and 88% in consecutive
1 to 5 runs, respectively, which indicated that the catalyst could
be reused for at least 5 runs without loss of the activities.
To show the advantage of this work in comparison with
previously described procedures, we took synthesis of 4c for
a representative example. As shown in Table 3, in comparison
with reported protocols, our catalytic system has merits of higher
yield, shorter time, without using organic solvent as co-solvent,
and efficient reusablilites.
15 L. Chen, X. J. Huang, Y. Q. Li, M. Y Zhou and W. J. Zheng, Monatsh.
Chem., 2009, 140, 45.
16 J. Zheng and Y. Li, Mendeleev Commun., 2011, 21, 280.
In conclusion, we have developed a practical and efficient
one-pot synthesis of various spiroacenaphthylene derivatives in
water with a reusable basic ionic liquid as the catalyst. This
method offers the advantages of environmental compatibility,
mild reaction conditions, short reaction times, high yields and
operational simplicity.
Received: 23rd November 2011; Com. 11/3839
– 149 –