Journal of the American Chemical Society
Communication
(10) For examples of enantioselective electrophilic sulfenylation of β-
keto esters, see: (a) Ishimaru, T.; Ogawa, S.; Tokunaga, E.; Nakamura,
S.; Shibata, N. J. Fluorine Chem. 2009, 130, 1049−1053. (b) Fang, L.;
Lin, A.; Hu, H.; Zhu, C. Chem.Eur. J. 2009, 15, 7039−7043.
(c) Jereb, M.; Togni, A. Chem.Eur. J. 2007, 13, 9384−9392.
(d) Srisailam, S. K.; Togni, A. Tetrahedron: Asymmetry 2006, 17,
2603−2607. (e) Sobhani, S.; Fielenbach, D.; Marigo, M.; Wabnitz, T.
C.; Jørgensen, K. A. Chem.Eur. J. 2005, 11, 5689−5694. (f) Jereb,
M.; Togni, A. Org. Lett. 2005, 7, 4041−4043.
ACKNOWLEDGMENTS
■
This study was supported by the Asahi Glass Foundation and a
Grant-in-Aid for Young Scientists (B) (23750111) from
MEXT. We thank the Instrument Center of the Institute for
Molecular Science for permission and advice on the usage of
their X-ray diffractometer. We also thank the Nippon Synthetic
Chemical Industry Co., Ltd. for supplying ethyl isocyanoacetate
used in the synthesis of chiral ligands.
(11) (a) Cui, L.-Q.; Dong, Z.-L.; Liu, K.; Zhang, C. Org. Lett. 2011,
13, 6488−6491. (b) Hart, H. Chem. Rev. 1979, 79, 515−528.
(12) The isolated yield of 9k was modest because of its volatility. We
confirmed that the enantiopurity of 9k did not change during the
solvent evaporation. For the self-disproportionation effect of the
enantiomers, see: (a) Ueki, H.; Yasumoto, M.; Soloshonok, V. A.
Tetrahedron: Asymmetry 2010, 21, 1396−1400. (b) Soloshonok, V. A.
Angew. Chem., Int. Ed. 2006, 45, 766−769. (c) Soloshonok, V. A.;
Ueki, H.; Yasumoto, M.; Mekala, S.; Hirschi, J. S.; Singleton, D. A. J.
Am. Chem. Soc. 2007, 129, 12112−12113.
(13) For recent reviews of asymmetric fluorination, see: (a) Lectard,
S.; Hamashima, Y.; Sodeoka, M. Adv. Synth. Catal. 2010, 352, 2708−
2732. (b) Ueda, M.; Kano, T.; Maruoka, K. Org. Biomol. Chem. 2009,
7, 2005−2012. (c) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1−
PR43. (d) Furuya, T.; Kuttruff, C. A.; Ritter, T. Curr. Opin. Drug
Discovery Dev. 2008, 11, 803−819. (e) Brunet, V. A.; O’Hagan, D.
Angew. Chem., Int. Ed. 2008, 47, 1179−1182. (f) Shibata, N.; Ishimaru,
T.; Nakamura, S.; Toru, T. J. Fluorine Chem. 2007, 128, 469−483.
REFERENCES
■
(1) The following paper reports that the nucleophilic substitution of
2-chloro-2-phenylpropanal by sodium azide proceeds via SN2 displace-
ment: Masaki, Y.; Arasaki, H.; Iwata, M. Chem. Lett. 2003, 32, 4−5.
(2) For the SN2 reaction of tertiary halides and related studies, see:
(a) Mascal, M.; Hafezi, N.; Toney, M. D. J. Am. Chem. Soc. 2010, 132,
10662−10664. (b) Edwards, O. E.; Grieco, C. Can. J. Chem. 1974, 52,
3561−3562. (c) Grob, C. A.; Seckinger, K.; Tam, S. W.; Traber, R.
Tetrahedron Lett. 1973, 14, 3051−3054. (d) Cook, D.; Parker, A. J. J.
Chem. Soc. B 1968, 142−148. (e) Miotti, U.; Fava, A. J. Am. Chem. Soc.
1966, 88, 4274−4275. (f) Winstein, S.; Smith, S.; Darwish, D.
Tetrahedron Lett. 1959, 1, 24−31. (g) Hughes, E. D.; Ingold, C. K.;
Mackie, J. D. H. J. Chem. Soc. 1955, 3173−3177.
(3) Although the electrophilic chlorination of β-keto esters is known
to be a useful method for the preparation of chiral tertiary chlorides,
there is no known catalyst system that gives greater than 90% ee for
both acyclic and cyclic substrates. For earlier reports of enantiose-
lective chlorination of β-keto esters, see: (a) Jiang, J. J.; Huang, J.;
Wang, D.; Yuan, Z.-L.; Zhao, M.-X.; Wang, F.-J.; Shi, M. Chirality
2011, 23, 272−276. (b) Hintermann, L.; Perseghini, M.; Togni, A.
Beilstein J. Org. Chem. 2011, 7, 1421−1435. (c) Cai, Y.; Wang, W.;
Shen, K.; Wang, J.; Hu, X.; Lin, L.; Liu, X.; Feng, X. Chem. Commun.
2010, 1250−1252. (d) Etayo, P.; Badorrey, R.; Díaz-de-Villegas, M.
́
D.; Galvez, J. A. Adv. Synth. Catal. 2010, 352, 3329−3338.
(e) Kawatsura, M.; Hayashi, S.; Komatsu, Y.; Hayase, S.; Itoh, T.
Chem. Lett. 2010, 39, 466−467. (f) Qi, M.-H.; Wang, F.-J.; Shi, M.
Tetrahedron: Asymmetry 2010, 21, 247−253. (g) Frings, M.; Bolm, C.
Eur. J. Org. Chem. 2009, 4085−4090. (h) Shibatomi, K.; Tsuzuki, Y.;
Iwasa, S. Chem. Lett. 2008, 37, 1098−1099. (i) Bartoli, G.; Bosco, M.;
Carlone, A.; Locatelli, M.; Melchiorre, P.; Sambri, L. Angew. Chem., Int.
Ed. 2005, 44, 6219−6222. (j) Shibata, N.; Kohno, J.; Takai, K.;
Ishimaru, T.; Nakamura, S.; Toru, T.; Kanemasa, S. Angew. Chem., Int.
Ed. 2005, 44, 4204−4207. (k) Marigo, M.; Kumaragurubaran, N.;
Jørgensen, K. A. Chem.Eur. J. 2004, 10, 2133−2137. (l) Ibrahim, H.;
Kleinbeck, F.; Togni, A. Helv. Chim. Acta 2004, 87, 605−610.
(m) Hintermann, L.; Togni, A. Helv. Chim. Acta 2000, 83, 2425−2435.
(4) For enantioselective chlorination of 3-substituted oxindoles, see:
(a) Zheng, W.; Zhang, Z.; Kaplan, M. J.; Antilla, J. C. J. Am. Chem. Soc.
2011, 133, 3339−3341. (b) Zhao, M.-X.; Zhang, Z.-W.; Chen, M.-X.;
Tang, W.-H.; Shi, M. Eur. J. Org. Chem. 2011, 3001−3008. (c) Wang,
D.; Jiang, J.-J.; Zhang, R.; Shi, M. Tetrahedron: Asymmetry 2011, 22,
1133−1141.
(5) For reviews of the enantioselective construction of chlorinated
chiral stereogenic centers, see: (a) Shibatomi, K. Synthesis 2010,
2679−2702. (b) France, S.; Weatherwax, A.; Lectka, T. Eur. J. Org.
Chem. 2005, 475−479.
(6) (a) Shibatomi, K.; Muto, T.; Sumikawa, Y.; Narayama, A.; Iwasa,
S. Synlett 2009, 241−244. (b) Shibatomi, K.; Narayama, A.; Soga, Y.;
Muto, T.; Iwasa, S. Org. Lett. 2011, 13, 2944−2947.
(7) For the Lewis acid-catalyzed enantioselective α-fluorination of
malonates, see: Reddy, D. S.; Shibata, N.; Nagai, J.; Nakamura, S.;
Toru, T.; Kanemasa, S. Angew. Chem., Int. Ed. 2008, 47, 164−168.
(8) We recently disclosed that the nucleophilic substitution of α-
chloro-α-fluoro-β-keto esters proceeds in a stereospecific manner (see
ref 6b). This result encouraged us to try the SN2 displacement of
tertiary chlorides.
(9) The relative configuration of 7h was determined by X-ray
structural analysis. See the Supporting Information for the details.
D
dx.doi.org/10.1021/ja304806j | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX