Organic Letters
Letter
2010; pp 119−135. (b) Sibbald, P. A. Palladium-catalyzed oxidative
difunctionalization of alkenes: New reactivity and new mechanisms;
ProQuest, UMI Dissertation Publishing: 2011. (c) Bergmeier, S. C.
Tetrahedron 2000, 56, 2561. (d) Beccalli, E. M.; Broggini, G.; Martinelli,
M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. (e) Kotov, V.;
Scarborough, C. C.; Stahl, S. S. Inorg. Chem. 2007, 46, 1910. (f) Li, G.;
Kotti, S. R. S. S.; Timmons, C. Eur. J. Org. Chem. 2007, 72, 2745.
Scheme 5. Proposed Mechanism
̌
(g) Muniz, K. Angew. Chem., Int. Ed. 2009, 48, 9412. (h) Chemler, S. R.
Org. Biomol. Chem. 2009, 7, 3009. (i) Jensen, K. H.; Sigman, M. S. Org.
Biomol. Chem. 2008, 6, 4083. (j) McDonald, R. I.; Liu, G.; Stahl, S. S.
Chem. Rev. 2011, 111, 2981. (k) Zhang, C.; Tang, C.; Jia, N. Chem. Soc.
Rev. 2012, 41, 3464.
(2) (a) Wu, T.; Mu, X.; Liu, G.-S. Angew. Chem., Int. Ed. 2011, 50,
12578. (b) Mu, X.; Wu, T.; Wang, H.-Y.; Guo, Y.-L.; Liu, G.-S. J. Am.
Chem. Soc. 2012, 134, 878. (c) Wei, W.-T.; Zhou, M.-B.; Fan, J.-H.; Liu,
W.; Song, R.-J.; Liu, Y.; Hu, M.; Xie, P.; Li, J.-H. Angew. Chem., Int. Ed.
2013, 52, 3638. (d) Li, Y.-M.; Sun, M.; Wang, H.-L.; Tian, Q.-P.; Yang,
S.-D. Angew. Chem., Int. Ed. 2013, 52, 3972. (e) Li, X.; Xu, X.; Hu, P.;
Xiao, X.; Zhou, C. J. Org. Chem. 2013, 78, 7343. (f) Matcha, K.; Narayan,
R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 7985. (g) Meng,
Y.; Guo, L.-N.; Wang, H.; Duan, X.-H. Chem. Commun. 2013, 49, 7540.
(3) Zhou, M.-B.; Song, R.-J.; Ouyang, X. H.; Liu, Y.; Wei, W.-T.; Deng,
G.-B.; Li, J.-H. Chem. Sci. 2013, 4, 2690.
(4) Wu, T.; Zhang, H.; Liu, G. Tetrahedron 2012, 68, 5229.
(5) (a) Jia, F.; Liu, K.; Xi, H.; Lu, S.; Li, Z. Tetrahedron. Lett. 2013, 54,
6337. (b) Wang, H.; Guo, L.-N.; Duan, X.-H. Adv. Synth. Catal. 2013,
355, 2222.
(6) (a) Hoffmann, N. Chem. Rev. 2008, 108, 1052. (b) Fleck, M.; Bach,
T. Angew. Chem., Int. Ed. 2008, 47, 6189. (c) Selig, P.; Bach, T. Angew.
Chem., Int. Ed. 2008, 47, 5082. (d) Veerman, M.; Resendiz, M. J.; Garcia-
Garibay, M. A. Org. Lett. 2006, 8, 2615. (e) Mortko, C. J.; Garcia-
Garibay, M. A. J. Am. Chem. Soc. 2005, 12, 7994. (f) Fagnoni, M.; Albini,
A. Acc. Chem. Res. 2005, 38, 713. (g) Roth, H. D. Angew. Chem., Int. Ed.
1989, 28, 1193. (h) Yang, C.; Xia, W.-J. Chem.Asian J. 2009, 4, 1774.
(i) Horspool, W. M. Synthetic Organic Photochemistry; Plenum Press:
New York, 1984.
(7) (a) Xia, W.-J.; Shao, Y.-T.; Gui, W.-J.; Yang, C. Chem. Commun.
2011, 47, 11098. (b) Liu, Q.; Meng, J.; Liu, Y.; Yang, C.; Xia, W.-J. J. Org.
Chem. 2014, 79, 8143. (c) Zhao, G.-L.; Yang, C.; Sun, H.-N.; Lin, R.; Xia,
W.-J. Org. Lett. 2012, 14, 776. (d) Shao, Y.-T.; Yang, C.; Gui, W.-J.; Liu,
Y.; Xia, W.-J. Chem. Commun. 2012, 48, 3560. (e) Gou, B.-Q.; Li, D.-Z.;
Yang, C.; Xia, W.-J.; Li, Y.-L.; Chen, X.-M. J. Photochem. Photobiol. A:
Chem. 2012, 233, 46. (f) Yang, C.; Xia, W.-J.; Scheffer, J. R. Tetrahedron
2007, 63, 6791. (g) Zhao, G.-L.; Yang, C.; Chen, Q.; Jin, J.; Zhang, X.;
Zhao, L.-Y.; Xia, W.-J. Tetrahedron 2009, 65, 9952.
(8) Ayitou, A. J. L.; Sivaguru, J. J. Am. Chem. Soc. 2009, 131, 5036.
(9) CCDC 1026351 (6a) contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The
position to form the intermediate C (black), and sequential
cyclization led to intermediate D. Then a 1,2-H shift happened
instead of loss of the hydrogen radical to afford the intermediate
E. The final product 6 was formed by C−N bond cleavage
followed by hydrogen radical abstraction. For prop-2-enol
substrates 7, the benzoyl radical was added to the C−C double
bond to lead to the intermediate G (green); subsequently, the
radical cyclization to the aryl ring occurred to form the
intermediate H containing a cyclopropanyl ring. Synchronous
formation of a carbonyl group through the cleavage of the O−H
bond and ring opening of cyclopropane led to the final product 8.
In summary, we have developed a novel protocol for the
difunctionalization of alkenes through an aroyl radical addition/
1,4-/1,2-aryl shift cascade. The method is highlighted by the use
of the milder reaction conditions and is environmentally benign
by using economic available benzoin as the benzoyl precursor. In
addition the unique 1,2-/1,4-aryl shift reactions have been
discovered through a radical pathway. Further studies on the use
of these reactions are currently underway.
ASSOCIATED CONTENT
* Supporting Information
■
S
1
General procedures, materials, instrumentation, synthesis, H,
13C NMR and 2D spectra. This material is available free of charge
AUTHOR INFORMATION
Corresponding Authors
■
Author Contributions
†L.W.Z and H.L.H. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for the financial support from China NSFC (Nos.
21002018, 21072038, and 21472030), SKLUWRE (No.
2014DX01), the Fundamental Research Funds for the Central
Universities (Grant No. HIT.BRETIV.201310), and HLJNSF
(B201406).
REFERENCES
(1) For recent reviews: (a) Jacques, B.; Muin
Heteroatom Bond Formation; Yudin, A. K., Ed.; Wiley-VCH: Weinheim,
■
̌
z, K. In Catalyzed Carbon-
D
Org. Lett. XXXX, XXX, XXX−XXX