5910
G. Chen et al. / Tetrahedron 68 (2012) 5908e5911
Table 3
4.2. General procedure for the catalytic asymmetric 1,4-
additions
Addition of arylboronic acids to chalconesa
Under argon atmosphere, to a 10-mL Schlenk tube was added
[Rh(C2H4)2Cl]2 (1.2 mg, 0.003 mmol), tert-butanesulfinylphos-
phine ligand (0.0072 mmol), followed by 0.5 mL dichloromethane,
the mixture was stirred at rt for 30 min, then solvent was removed
and chalcone (0.3 mmol) and arylboronic acid (0.6 mmol) were
added, after purging with argon, 2-propanol (0.6 mL) and KF
(0.15 mL, 1.0 M in H2O, 0.15 mmol) were added sequentially. The
mixture was stirred at 40 ꢀC for 3 h, then the solvent was removed
in vacuo and the residue was purified by flash chromatography on
silica gel with petroleum ether/ethyl acetate 20/1 as eluent to
afford the adducts.
Entry R1
R2
R3
Yield (%)b ee (%)c
1
H
H (5a)
H (5a)
H (5a)
H (5a)
H (5a)
H (5a)
4-Me (6b)
3-Me (6c)
4-MeO (6d) 98
3-MeO (6e) 97
2-MeO (6f) Trace
3, 5-Me (6g) 99
92
97
ꢁ97
95
2
H
3
H
98
4
H
89 (S)d
nd
5
H
6
H
97
4.2.1. 1,3-Diphenyl-3-(p-tolyl)propan-1-one (7ba).2,5a,6 Yield 98%,
7
8
9
H
H
H
H
H
H
H
H
H (5a)
H (5a)
H (5a)
4-Cl (6 h)
4-F3C (6i)
2-Naph (6j) 99
96
95
81
25
94
ꢁ97
ꢁ93 (R)d
92
97
nd
nd
95
97
81
white solid, mp 77e78 ꢀC, ½a D20
ꢂ ꢁ11 (c 0.110, CHCl3) for 95% ee.
1H NMR (300 MHz, CDCl3):
d
¼2.34 (s, 3H), 3.78 (d, J¼7.32 Hz,
10
11
12
13
14
15
16e
17
18e
19e
20e
21
4-MeO (5c)
3-MeO (5d)
3, 5-MeO (5e)
3-OH (5f)
4-Br (5g)
4-MeO (5h)
4-MeO (5i)
4-MeO (5j)
2-Th (5k)
2-Furyl (5l)
2-Pyr (5m)
H (6a)
H (6a)
H (6a)
H (6a)
H (6a)
H (6a)
H (6a)
H (6a)
H (6a)
H (6a)
H (6a)
93
99
99
99
nr
2H), 4.86 (t, J¼7.31 Hz, 1H), 7.14 (d, J¼7.94 Hz, 2H), 7.23 (d,
J¼7.96 Hz, 3H), 7.32e7.33 (m, 4H), 7.45e7.50 (m, 2H), 7.56e7.61 (m,
1H), 7.98e8.00 (m, 2H). 13C NMR (75 MHz, CDCl3):
d
¼20.9, 44.7,
45.5, 126.2, 127.6, 127.7, 128.0, 128.46, 128.50, 129.2, 133.0, 135.8,
137.0, 141.1, 144.3, 198.0.
4-Br
4-MeO
4-NO2
H
H
H
nr
98
31
83
94
34
98
HPLC: Daicel Chiralcel OJ-H, n-hexane/2-propanol¼70/30,
1.0 mL/min, 254 nm, retention time: 13.5 min (minor), 16.2 min
(major).
66
48
(E)-CH3COCH]CHC6H4-p-OCH3 (5n) H (6a)
90 (R)f
a
Acknowledgements
Reactions were performed with 5 (0.3 mmol), 6 (0.6 mmol), [Rh(C2H4)2Cl]2
(1.2 mg, 0.003 mmol), 3d (0.0072 mmol), KF (0.15 mL, 1.0 mol/L in H2O, 0.15 mmol),
2-propanol (0.6 mL) at 40 ꢀC for 3 h.
We thank the NSFC (No. 21072186 and 20872139), the West
Light Foundation of CAS, Chengdu Institute of Biology of CAS
(Y0B1051100), the Major State Basic Research Development Pro-
gram (973 program, 2010CB833300) for financial support.
b
Yield of the isolated product.
c
Determined by HPLC analysis on a chiral stationary phase.
d
Determined by comparison of the specific optical rotation with literature5a and
the others were assigned by analogy.
e
For 10 h.
f
Determined by comparison of the specific optical rotation with literature.9
Supplementary data
Full experimental details for all compounds, as well spectral
data can be founded in the Supplementary data. Supplementary
data associated with this article can be found, in the online version,
complex. The adducts were readily obtained in up to 99% yield and
98% ee. The application of this methodology to other linear un-
saturated carbonyl compounds is underway in our laboratory.
References and notes
4. Experimental section
4.1. General method
1. (a) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc.
1998, 120, 5579; For review, see: (b) Hayashi, T. Synlett 2001, 879; (c) Hayashi, T.;
Yamasaki, K. Chem. Rev. 2003, 103, 2829; (d) Hayashi, T. Pure Appl. Chem. 2004,
76, 465; (e) Yoshida, K.; Hayashi, T. In Modern Rhodium-Catalyzed Organic Re-
actions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005; pp 55e77; (f) Edwards,
H. J.; Hargrave, J. D.; Penrose, S. D.; Frost, C. G. Chem. Soc. Rev. 2010, 39, 2093; For
selected examples using representative ligands, see: (g) Boiteau, J. G.; Imbos, F.;
Minnaard, A. J.; Feringa, B. L. Org. Lett. 2003, 5, 681; (h) Hayashi, T.; Ueyama, K.;
Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508; (i) Shintani, R.;
Duan, W. L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44,
4611; (j) Feng, C. G.; Wang, Z. Q.; Shao, C.; Xu, M. H.; Lin, G. Q. Org. Lett. 2008, 10,
4101; (k) Mariz, R.; Luan, X. J.; Gatti, M.; Linden, A.; Dorta, R. J. Am. Chem. Soc.
2008, 130, 2172; (l) Hu, X. C.; Zhuang, M. Y.; Cao, Z. P.; Du, H. F. Org. Lett. 2009, 11,
4744; (m) Hahn, B. T.; Tewes, F.; Frohlich, R.; Glorius, F. Angew. Chem., Int. Ed.
2010, 49, 1143; (n) Thaler, T.; Guo, L. N.; Steib, A. K.; Raducan, M.; Karaghiosoff,
K.; Mayer, P.; Knochel, P. Org. Lett. 2011, 13, 3182; (o) Kikushima, K.; Holder, J. C.;
Gatti, M.; Stoltz, B. M. J. Am. Chem. Soc. 2011, 133, 6902.
2. Methods to get racemic diarylmethine moiety, see: (a) Dong, L.; Xu, Y. J.; Gong,
L. Z.; Mi, A. Q.; Jiang, Y. Z. Synthesis 2004, 1057; (b) Bedford, R. B.; Betham, M.;
Charmant, J. P. H.; Haddow, M. F.; Orpen, A. G.; Pilarski, L. T.; Coles, S. J.;
Hursthouse, M. B. Organometallics 2007, 26, 6346.
3. (a) Paquin, J. F.; Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. J. Am. Chem. Soc.
2005, 127, 10850; (b) Paquin, J. F.; Stephenson, C. R. J.; Defieber, C.; Carreira, E. M.
Org. Lett. 2005, 7, 382.
Unless otherwise noted, all commercially available reagents
were used as received without further purification. Solvents used
in catalysis were distilled from appropriate drying agents and
bubbled with argon for 30 min prior to use. Solutions used in the
catalysis were made by dissolving the salt in distilled water then
bubbled with argon for 30 min prior to use. Flash column
chromatography was performed on silica gel H (HG/T2354-92,
Qingdao Haiyang Chemical Co. Ltd.); analytical TLC was per-
formed on HSGF 254 glass plates precoated with 0.15e0.20 mm
thickness of silica gel (Yantai Jiangyou Silica Gel Development Co.
Ltd). 1H NMR and 13C NMR spectra were recorded on a Bruker
300 spectrometer (300 MHz for 1H and 75 MHz for 13C) in CDCl3.
Chemical shifts were recorded in parts per million (d) relative to
CHCl3 at 7.26 for 1H NMR and 77.0 for 13C NMR. Electrospray
ionization high-resolution mass spectra (ESI-HRMS) were recor-
ded on a Bruke P-SIMS-Gly FT-ICR mass spectrometer. Optical
rotation was recorded on PE Model 341 polarimeter. Enantio-
meric excess was determined by HPLC analysis on Chiralcel OJ-H,
Chiralpak AD-H, IA column (Daicel Chemical Industries, LTD)
using UV detector.
4. (a) Hayashi, T.; Tokunaga, N.; Okamoto, K.; Shintani, R. Chem. Lett. 2005, 34,
1480; (b) Sorgel, S.; Tokunaga, N.; Sasaki, K.; Okamoto, K.; Hayashi, T. Org. Lett.
2008, 10, 589; Recently, asymmetric 1,6-addition of arylboroxines to
-unsaturated ketones was reported: Nishimura, T.; Noishiki, A.; Hayashi, T.
Chem. Commun. 2012, 48, 973.
d-aryl-a, b,
g, d