S. Sivaramakrishnan et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3791–3794
3793
Table 1
Rate constants for 1, 5, and 6
Compound
Conditions
kobs (minꢁ1
)
t1/2
53 min
112 min
27 h
5 No thiol
6 No thiol
1 No thiol
5 + Thiol
6 + Thiol
1 + Thiol
5 (70
6 (70
1 (70
5 (70
5 (70
5 (70
l
l
l
l
l
l
M); MOPS (250 mM, pH 7); MeCN (25% v/v); 24 °C
M); MOPS (250 mM, pH 7); MeCN (25% v/v); 24 °C
M); MOPS (250 mM, pH 7); MeCN (25% v/v); 24 °C
M); GSH (700
M); GSH (700
M); GSH (700
13.2 0.01 ꢀ 10ꢁ3
6.2 0.6 ꢀ 10ꢁ3
0.408 0.001 ꢀ 10ꢁ3
24.3 0.1 ꢀ 10ꢁ2
18.3 0.2 ꢀ 10ꢁ2
6.67 0.01 ꢀ 10ꢁ2
l
l
l
M) MOPS (300 mM, pH 7); MeCN (25% v/v); 24 °C
M) MOPS (300 mM, pH 7); MeCN (25% v/v); 24 °C
M) MOPS (300 mM, pH 7); MeCN (25% v/v); 24 °C
2.8 min
3.8 min
10.4 min
with a rate constant of kobs = 0.408 0.001 ꢀ 10ꢁ3 minꢁ1 (t1/2 = 27 h).
or C30—reactions that may be suppressed by the macrocyclic
substituent.
This value is generally consistent with a previous measurement of
leinamycin’s stability (100
l
M 1 in HEPES, 250 mM, pH 7, 24 °C, con-
Previous work established three mechanisms by which the mac-
rocycle of leinamycin may facilitate efficient DNA alkylation. First,
the Z,E-5-(thiazol-4-yl)-penta-2,4-dienone portion of the macrocy-
taining no organic co-solvent) that gave a rate constant of 0.72 ꢀ 10
ꢁ3 minꢁ1 (t1/2 = 16.1 h).45,61 Clearly, the 1,2-dithiolan-3-one 1-oxide
heterocycle, when embedded in the context of the natural product, en-
joys remarkably increased stability compared to the simple analogues 5
and 6.
We next examined the reaction of 5, 6, and leinamycin (70
with the biological thiol glutathione (GSH, 700 M) in MOPS buffer
(300 mM, pH 7) containing acetonitrile (25% v/v). The pseudo-first-
cle presents a slightly twisted p-surface that confers non-covalent
DNA-binding properties to the natural product.32,64,65 Second, the
hydroxyl group at C8 of the macrocycle engages the episulfonium
ion 5 in a reversible thia-Payne reaction that may stabilize the epis-
ulfonium ion against hydrolytic destruction.30 Third, the conforma-
tionally rigid macrocycle may accurately position the C6–C7 alkene
for efficient reaction with the electrophilic sulfur of 3 in the gener-
ation of the alkylating agent 4 (Scheme 1).66 The work presented
here establishes an additional role for the macrocyclic portion of
leinamycin in facilitating efficient thiol-triggered alkylation of
cellular DNA. The macrocyclic portion of leinamycin imparts
substantial aqueous stability to the 1,2-dithiolan-3-one 1-oxide
without compromising its ability to act as a thiol-sensing unit.
Thus, the 18-membered macrocycle of leinamycin enables efficient
and selective bioactivation of the natural product in the thiol-rich
environment found inside cells.
lM)
l
order rate constants for the disappearance of 5 and 6 under these
conditions were measured at kobs = 24.3 0.1 ꢀ 10ꢁ2 minꢁ1 (t1/2
=
2.8 min) and kobs = 18.3 0.2 ꢀ 10ꢁ2 minꢁ1 (t1/2 = 3.8 min), respec-
tively. From these values, one can estimate second-order rate
constants of 344 Mꢁ1 minꢁ1 for 5 and 261 Mꢁ1 minꢁ1 for 6. The
apparent rate constant for the reaction of leinamycin with GSH
under these conditions was kobs = 6.67 0.01 ꢀ 10ꢁ2 minꢁ1
(t1/2 = 10.4 min, 95 Mꢁ1 minꢁ1). This is reasonably close to the
value of 10.4 Mꢁ1 sꢁ1 (624 Mꢁ1 minꢁ1) reported previously for
the reaction of leinamycin with GSH (in HEPES buffer, 50 mM, pH
7, 24 °C, containing no organic co-solvent).45
The natural product leinamycin was isolated as the single ste-
reoisomer shown in Scheme 1, with a trans relationship between
the C40-OH group and the S10-sulfinyl oxygen.62 Our work with 5
and 6 show that the naturally-occurring trans isomer is approxi-
mately two times more stable than the cis isomer in aqueous buf-
fered solution. However, differences in the hydrolytic stability of
the cis/trans isomers 5 and 6 are subtle compared to the dramatic
effect that leinamycin’s 18-membered macrocycle brings to the
stability of the natural product in aqueous solution. Leinamycin
is approximately 30 times more stable than 5 and 15 times more
stable than 6 against decomposition in aqueous buffer. It is inter-
esting to consider potential mechanisms by which the macrocycle
stabilizes leinamycin against decomposition in aqueous solution.
Based upon computational analysis of small model systems, Wu
Acknowledgment
We are grateful to the National Institutes of Health for support
of this work (CA83925 and 119131).
References and notes
1. Wolkenberg, S. E.; Boger, D. L. Chem. Rev. 2002, 102, 2477.
2. Guengerich, F. P. Carcinogenesis 2000, 21, 345.
3. Gates, K. S. In Comprehensive Natural Products Chemistry; Kool, E. T., Ed.;
Pergamon: New York, 1999; Vol. 7, pp 491–552.
4. Gates, K. S. In Reviews of Reactive Intermediates; Platz, M. S., Moss, R. A., Jones,
M. J., Eds.; John Wiley and Sons, Inc.: Hoboken, 2007; pp 333–378.
5. Gates, K. S. Chem. Res. Toxicol. 2009, 22, 1747.
6. Cronin, M. T. D. Crit. Rev. Toxicol. 2010, 40, 728.
7. Meister, A.; Anderson, M. E. Ann. Rev. Biochem. 1983, 52, 711.
8. Chu-Moyer, M.; Danishefsky, S. J. Tetrahedron Lett. 1993, 34, 3025.
9. Lee, A. H. F.; Chen, J.; Liu, D.; Leung, T. Y. C.; Chan, A. S. C.; Li, T. J. Am. Chem. Soc.
2002, 124, 13972.
10. Lee, H. F. L.; Chan, A. S. C.; Li, T. JCS Chem. Commun. 2002, 2112.
11. Chatterjee, M.; Cramer, K. D.; Townsend, C. A. J. Am. Chem. Soc. 1993, 115, 3374.
12. Myers, A. G.; Cohen, S. B.; Tom, N. J.; Madar, D. J.; Fraley, M. E. J. Am. Chem. Soc.
1995, 117, 7574.
and Greer suggested that an nO
!
rꢂS10 interaction between the
amide carbonyl in the macrocycle and the S10-sulfinyl group of
leinamycin stabilizes the 1,2-dithiolan-3-one 1-oxide ring system
by ꢃ6 kcal/mol.63 Alternatively, or in addition, the macrocycle of
the natural product may present a steric impediment to these ap-
proach of hydroxide to the 1,2-dithiolan-3-one 1-oxide heterocycle
of leinamycin. The solution structure of leinamycin deserves
further consideration in this regard. Regardless of mechanism,
our results clearly establish that the macrocyclic portion of leina-
mycin stabilizes the natural product against decomposition in
aqueous solution.
13. Myers, A. G.; Cohen, S. B.; Kwon, B. M. J. Am. Chem. Soc. 1994, 116, 1255.
14. Myers, A. G. Tetrahedron Lett. 1987, 28, 4493.
15. Chatterji, T.; Gates, K. S. Bioorg. Med. Chem. Lett. 1998, 8, 535.
16. Chatterji, T.; Gates, K. S. Bioorg. Med. Chem. Lett. 2003, 13, 1349.
17. Chatterji, T.; Keerthi, K.; Gates, K. S. Bioorg. Med. Chem. Lett. 2005, 15, 3921.
18. Wang, Y.; Koreeda, M.; Chatterji, T.; Gates, K. S. J. Org. Chem. 1998, 63, 8644.
19. McMorris, T. C.; Kelner, M. J.; Wang, W.; Moon, S.; Taetle, R. Chem. Res. Toxicol.
1990, 3, 574.
It is striking that the macrocycle increases the aqueous stability
of leinamycin without compromising the ability of the natural
product to react avidly with thiols. For example, leinamycin is only
3.6 times less reactive toward GSH than is compound 5. This may
reflect the fact that thiol-mediated activation of leinamycin
proceeds via attack of the mercaptan at the sterically exposed S20
position of the 1,2-dithiolan-3-one 1-oxide ring system,41 while
hydrolysis may proceed primarily via attack of hydroxide on S10
20. Paz, M.; Tomasz, M. Org. Lett. 2001, 3, 2789.
21. Wang, S.; Kohn, H. J. Org. Chem. 1999, 42, 788.
22. Fekry, M. I.; Price, N.; Zang, H.; Huang, C.; Harmata, M.; Brown, P.; Daniels, J. S.;
Gates, K. S. Chem. Res. Toxicol. 2011, 24, 217.
23. Hamilton, D. S.; Zhang, X.; Ding, Z.; Hubatsch, I.; Mannervik, B.; Houk, K. N.;
Ganem, B.; Creighton, D. J. J. Am. Chem. Soc. 2003, 125, 15049.
24. Lee, S. H.; Kohn, H. J. Am. Chem. Soc. 2004, 126, 4281.
25. Gates, K. S. Chem. Res. Toxicol. 2000, 13, 953.
26. Hara, M.; Asano, K.; Kawamoto, I.; Takiguchi, T.; Katsumata, S.; Takahashi, K.;
Nakano, H. J. Antibiot. 1989, 42, 1768.