3794
A. M. Awad et al. / Tetrahedron Letters 53 (2012) 3792–3794
acetate in hexanes). Esterification of the 30-OH with succinic anhy-
dride afforded the loading monomer 7. Succinic anhydride
(3.0 mmol) was added to a mixture of 6 (0.6 mmol) and Et3N
(6.0 mmol) in anhydrous CH2Cl2 (15 mL) and the mixture was stir-
red for 20 h. The solvent was removed under reduced pressure and
the residue was dissolved in CH2Cl2, washed with 5% citric acid,
then H2O and brine, dried over anhydrous Na2SO4, and concen-
trated in a vacuum. The crude mixture was purified by silica col-
umn chromatography pre-washed with 2% Et3N (45% EtOAc in
hexanes) to afford compound 7 in a 76% yield.15
A common initial step in the solid-phase synthesis of oligonu-
cleotides is to covalently attach the 30 moiety of a modified pentose
sugar on the first nucleoside to controlled pore glass (CPG), which
contains long chain alkylamines.16 The modifications we have
incorporated enable our loading monomer to be joined to a solid
support17 and form guanidinium linkages with additional syn-
thetic nucleotides.18
11. Tomizu, M.; Negoro, Y.; Osaki, T.; Orita, A.; Ueyama, Y.; Nakagawa, O.;
Imanishi, T. Nucleosides Nucleotides Nucleic Acid 2007, 26, 893.
12. For the Mitsunobu reaction incorporating tetrachlorophthalimide: (a) Jia, Z. J.;
Kelberlau, S.; Olsson, L.; Anilkumar, G.; Fraser-Reid, B. Synlett 1999, 565; (b)
Tetzlaff, C. N.; Schwope, I.; Bleczinski, C. F.; Steinberg, J. A.; Richert, C.
Tetrahedron Lett. 1998, 39, 4215.
13. Diisopropyl azodicarboxylate was chosen to prevent the reaction from favoring
the formation of a side product containing a hydrazylmethyl group. See:
Swamy, K. C.; Kumar, N. N.; Balaraman, E.; Kumar, K. V. Chem. Rev. 2009, 109,
2551.
14. The 47% yield is likely due to the formation of a side product in which the 30-
hydroxyl on the sugar receives the modification.
15. Our products have remained stable in dry anoxic environments.
16. Pon, R. T.; Yu, S. Nucleic Acids Res. 2004, 32, 623.
17. The incorporation of 30-succinyl linker enables a molecule to be tethered to
controlled pore glass for the solid-phase synthesis of ribooligonucleotides. See:
(a) Sharma, P.; Sharma, A. K.; Malhotra, V. P.; Gupta, K. C. Nucleic Acids Res.
1992, 20, 4100; (b) Reddy, P. M.; Bruice, T. C. J. Am. Chem. Soc. 2004, 126, 3736.
18. Kearney, P. C.; Fernandez, M.; Flygare, J. A. J. Org. Chem. 1998, 63, 196.
19. Spectral
data
for
selected
compounds:
N4-Benzoyl-20,30-O-
isopropylidenecytidine (1) HRMS (ESI) m/z Calcd for C19H21N3O6 (M+Na)+
410.1322. Found 410.1311. 1H NMR (400 MHz, DMSO-d6): 11.29 s, 1H (NH);
8.30 d, 1H, J = 7.4 (H-6); 8.02 d, 2H, J = 6.8 (BzH); 7.62–7.50 m, 3H (BzH); 7.35
d, 1H, J = 7.2 (H-5); 5.85 d, 1H, J = 1.6 (H-10); 5.12 t, 1H, J = 5.0 (OH-50); 4.90 dd,
1H, J = 4.6, 1.6 (H-30); 4.76 q, 1H, J = 3.0 (H-20); 4.22 d, 1H, J = 3.2 (H-40); 3.65–
3.56 m, 2H (H-50); 1.48 s, 3H (CH3); 1.28 s, 3H (CH3). N4-Benzoyl-50-
tetrachlorophthalimido-20,30-O-isopropylidene-50-deoxycytidine (2) HRMS
(ESI) m/z Calcd for C27H20N4O7Cl4 (M+H)+ 653.0164. Found 653.0189 (base
peak of 4 Cl isotopes). 1H NMR (400 MHz, CDCl3): 11.62 s, 1H (NH); 7.94 d, 1H,
J = 7.0 (H-6); 7.67 d, 2H, J = 7.0 (BzH); 7.62–7.48 m, 4H (BzH and H-5); 5.54 d,
1H, J = 1.6 (H-10); 5.27 dd, 1H, J = 7.2, 1.6 (H-30); 5.05 q, 1H, J = 3.0 (H-20); 4.48
m, 1H (H-40); 4.30–4.00 m, 2H (H-50); 1.54 s, 3H (CH3); 1.35 s, 3H (CH3). N4-
Benzoyl-50-tetrachlorophthalimido-50-deoxycytidine (3) HRMS (ESI) m/z Calcd
for C24H16N4O7Cl4 (M+Na)+ 634.9665. Found 634.9667 (base peak of 4 Cl
isotopes). 1H NMR (400 MHz, DMSO-d6): 11.29 s, 1H (NH); 8.25 d, 1H, J = 7.8
(H-6); 8.02 d, 2H, J = 7.2 (BzH); 7.66–7.47 m, 3H (BzH); 7.41 d, 1H, J = 7.6 (H-5);
5.74 d, 1H, J = 3.0 (H-10); 5.59 br s, 1H (OH-30); 5.29 br s, 1H (OH-20); 4.20–4.16
m, 2H (H-50); 4.13–3.97 m, 3H (H-20,H-30,H-40). N4-Benzoyl-20-O-(tert-
butyldimethylsilyl)-50-tetrachlorophthalimido-50-deoxycytidine (4) HRMS
(ESI) m/z Calcd for C30H30N4O7SiCl4 (M+Na)+ 749.0530. Found 749.0522 (base
peak of 4 Cl isotopes). 1H NMR (400 MHz, CDCl3): 8.18 d, 1H, J = 7.6 (H-6); 8.91
d, 2H, J = 7.0 (BzH); 7.65–7.47 m, 4H (BzH and H-5); 5.64 d, 1H, J = 1.2 (H-10);
4.42 dd, 1H, J = 1.2, 3.8 (H-20); 4.32–4.16 m, 1H (H-30); 4.12–4.07 m, 1H (H-40);
4.03–3.88 m, 2H (H-50); 0.92 s, 9H (SiC(CH3)3); 0.25 s, 3H (SiCH3); 0.17 s, 3H
(SiCH3). N4-Benzoyl-20-O-(tert-butyldimethylsilyl)-50-amino-50-deoxycytidine
(5) LRMS (ESI) m/z Calcd for C22H32N4O5Si (M+Na)+ 461. Found 461. N4-
Benzoyl-20-O-(tert-butyldimethylsilyl)-50-N-(4-monomethoxytritylamino)-50-
deoxycytidine (6) HRMS (ESI) m/z Calcd for C42H48N4O6Si (M+Na)+ 755.3235.
Found 755.3242. 1H NMR (400 MHz, CDCl3): 7.91 d, 1H, J = 7.6 (H-6); 7.75 d,
2H, J = 7.8 (BzH); 7.61–7.22 m, 16H (ArH, BzH and H-5); 6.87 d, 2H, J = 8.8
(ArH); 5.78 d, 1H, J = 1.2 (H-10); 4.25 dd, 1H, J = 1.2, 3.6 (H-20); 4.17–4.13 m, 1H
(H-30); 4.10–4.06 m, 1H (H-40); 3.80 s, 3H (MMTr-OCH3); 3.73–3.53 m, 2H (H-
50); 0.94 s, 9H (SiC(CH3)3); 0.30 s, 3H (SiCH3); 0.17 s, 3H (SiCH3). N4-Benzoyl-20-
O-(tert-butyldimethylsilyl)-50-N-(4-mono-methoxytritylamino)-30-O-succinyl-
50-deoxycytidine (7) HRMS (ESI) m/z Calcd for C46H52N4O9Si (M+Na)+
833.3576. Found 833.3585. 1H NMR (400 MHz, CDCl3): 8.69 d, 1H, J = 7.6 (H-
6); 7.97 d, 2H, J = 8.4 (BzH); 7.58–7.20 m, 16H (ArH, BzH and H-5); 6.86 d, 2H,
J = 8.8 (ArH); 5.78 d, 1H, J = 1.2 (H-10); 4.88 dd, 1H, J = 4.8, 4.0 (H-30); 4.43 dd,
1H, J = 4.4, 1.2 (H-20); 4.40–4.36 m, 1H (H-40); 3.78 s, 3H (MMTr-OCH3); 3.64–
3.25 m, 2H (H-50); 2.57 s, 4H (CO(CH2)2); 0.90 s, 9H (SiC(CH3)3); 0.21 s, 3H
(SiCH3); 0.07 s, 3H (SiCH3).
In conclusion, we have confirmed the synthesis of N4-benzoyl-
20-O-(tert-butyldimethylsilyl)-50-N-(4-monomethoxytritylamino)-
30-O-succinyl-50-deoxycytidine by means of high resolution
mass-spectroscopy and proton nuclear magnetic resonance.19
Our method provides an efficient means of producing an RNG
(and also a P30? N50 phosphoramidate) monomer with high-yields
and high purity.
Acknowledgments
Funding was provided by the Chemistry Program at CSU Chan-
nel Islands. We thank Scott Duffer and the University of California
Santa Barbara for assistance in obtaining spectral data.
References and notes
1. (a) Opalinska, J. B.; Gewirtz, A. M. Nat. Rev. Drug Discov. 2002, 1, 503; (b)
Hokaiwado, N.; Takeshita, F.; Banas, A.; Ochiya, T. IDrugs 2008, 11, 274.
2. (a) Goodchild, J. Methods Mol. Biol. 2011, 764, 1; (b) Fiset, P. O.; Soussi-Gounni,
A. Rev. Biol. Biotechnol. 2001, 1, 27.
3. Letai, A. G.; Palladino, M. A.; Fromm, E.; Rizzo, V.; Fresco, J. R. Biochemistry 1988,
27, 9108.
4. (a) Inoue, H.; Hayase, Y.; Imura, A.; Iwai, S.; Miura, K.; Ohtsuka, E. Nucleic Acids
Res. 1987, 15, 6131; (b) Prakash, T. P. Chem. Biodivers. 2011, 8, 1616.
5. Duca, M.; Vekhoff, P.; Oussedik, K.; Halby, L.; Arimondo, P. B. Nucleic Acids Res.
2008, 36, 5123.
6. (a) Linkletter, B. A.; Szabo, I. E.; Bruice, T. C. Nucleic Acids Res. 2001, 29, 2370; (b)
Szabo, I. E.; Bruice, T. C. Bioorg. Med. Chem. 2004, 12, 1475; (c) Linkletter, B. A.;
Szabo, I. E.; Bruice, T. C. J. Am. Chem. Soc. 1999, 121, 3888.
7. Kojima, N.; Szabo, I. E.; Bruice, T. C. Tetrahedron 2002, 58, 867.
8. Janowski, B. A.; Huffman, K. E.; Schwartz, J. C.; Ram, R.; Hardy, D.; Shames, D. S.;
Minna, J. D.; Corey, D. R. Nat. Chem. Biol. 2005, 1, 216.
9. Inoue, H.; Hayase, Y.; Imura, A.; Iwai, S.; Miura, K.; Ohtsuka, E. Nucleic Acids Res.
1987, 15, 6131.
10. Barawkar, D. A.; Bruice, T. C. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 11047.