Communication
(m, 3H). 13C NMR: Multiple signals sets are observed due to the
presence of diastereomers and amide rotamers; see the SI. HRMS
(ESI): calcd. for C35H48N7O10Fe [M – HCOO]+ 782.2807, found
782.2817; calcd. for C35H47N7O10FeNa [M – HCOOH + Na]+ 804.2626,
of diastereomers and amide rotamers; see the SI. HRMS (ESI):
calcd. for C44H57N8O12Fe [M – HCOO]+ 945.3440, found 945.3446;
calcd. for C44H56N8O12FeNa [M – HCOOH + Na]+ 967.3259, found
967.3252. IR (ATR): ν = 3268 (s br, NH), 2043 (s, Fe(CO)3), 1961 (s,
˜
found 804.2628.). IR (ATR): ν = 3269 (s br, NH), 2044 (s, Fe(CO)3),
Fe(CO)3), 1724 and 1698 (m, C=O), 1635 and 1603 (s, C=O), 1544
˜
1961 (s, Fe(CO)3), 1635 and 1612 (s, C=O), 1548 (s, C=O) cm–1
.
(s, C=O) cm–1
.
Supporting Information (see footnote on the first page of this
article): For further experimental details including NMR signal as-
signments, see the supporting information.
Synthesis of the Acyloxydiene-Fe(CO) Building Block rac-14: A
solution of rac-13 (1 equiv., 1 mmol) in anhydrous THF (10 mL) was
cooled to 0 °C and TBAF (1
M in THF, 1.05 equiv., 1.05 mmol,
1.05 mL) was added dropwise. After 10 min, DIPEA (4 equiv.,
4 mmol, 0.68 mL) and 4-nitrophenyl chloroformate (4 equiv.,
4 mmol, 0.81 g) were sequentially added and the resulting suspen-
sion was stirred for 1.5 h at 0 °C. After removal of the solvent under
reduced pressure the residue was subjected to column chromatog-
raphy on silica gel (Cy/EtOAc, 5:1) to yield rac-14 (335 mg, 84 %) as
a brownish solid. 1H NMR (300 MHz, CDCl3): δ = 8.28 (d, 3J = 9.1 Hz,
2H), 7.37 (d, 3J = 9.1 Hz, 2H), 5.55 (d, 3J = 4.4 Hz, 1H), 5.16 (ψ t, 3J =
Acknowledgments
This work was supported by the Alexander von Humboldt foun-
dation (postdoctoral fellowship to N. S.), the Deutsche For-
schungsgemeinschaft (Project SCHM857/20-1) and the Russian
Foundation for Basic Research (Project №18-503-12087).
3
5.1 Hz, 1H), 3.18 (dt, 3J = 5.1 Hz, J = 2.0 Hz, 1H), 2.43–2.19 (m, 1H),
2.04–1.62 (m, 3H, 6-H). 13C NMR (75 MHz, CDCl3): δ = 210.8, 155.4,
150.8, 145.7, 125.5, 122.0, 105.0, 81.3, 79.7, 61.1, 26.4, 24.0. IR (ATR):
Keywords: CO releasing molecules · Peptides · Iron
complexes · Enzymes · Protecting groups
ν = 2047 (s, Fe(CO)3), 1970 (s, Fe(CO)3), 1764 (C=O), 1530 and 1347
˜
(m, NO2), 1207 (s, C-O) cm–1
.
[1] a) R. Tenhunen, H. S. Marver, R. Schmid, Proc. Natl. Acad. Sci. USA 1968,
61, 748–755; b) R. Motterlini, J. E. Clark, R. Foresti, P. Sarathchandra, B. E.
Mann, C. J. Green, Circ. Res. 2002, 90, E17–E24; c) A. Ismailova, D. Kuter,
D. S. Bohle, I. S. Butler, Bioinorg. Chem. Appl. 2018, Article ID 8547364,
23 pages.
Synthesis of Complex 3: Peptide 19 (1 equiv., 0.61 mmol, 320 mg)
and rac-14 (1.2 equiv., 0.574 mmol, 230 mg) were dissolved in anhy-
drous DMF (10 mL) under argon and the solution was cooled to
0 °C. Then, trimethylamine (5 equiv., 2.39 mmol, 333 μL) was added
and the mixture allowed to stir for 30 min before the solvent was
removed under reduced pressure. Purification by chromatography
on silica gel (DCM/MeOH, 10:1) yielded 21 (320 mg, 77 %) as a
white solid. Following the same alloc deprotection protocol as de-
scribed above in the synthesis of complex 2 0.404 mmol of 21 were
reacted to give 3 (250 mg, 90 %) as a colorless solid. 1H NMR
(400 MHz, [D6]DMSO): δ = 8.61–7.90 (m, 6H, NH), 7.33–7.09 (m, 5H),
[2] J. B. Haldane, Biochem. J. 1927, 21, 1068–1075.
[3] a) S. W. Ryter, L. E. Otterbein, Bioassays 2004, 26, 270–280; b) S. Ghosh,
J. Gal, N. Marczin, Ann. Med. 2010, 42, 1–12; c) B. E. Mann, Top. Orga-
nomet. Chem. 2010, 32, 247–285.
[4] a) F. Gullotta, A. di Masi, P. Ascenzi, Life 2012, 64, 378–386; b) L. Wu, R.
Wang, Pharmacol. Rev. 2005, 57, 585–630.
[5] a) N. Abeyrathna, K. Washington, C. Bashur, Y. Liao, Org. Biomol. Chem.
2017, 15, 8692–8699; b) B. E. Mann, Organometallics 2012, 31, 5728–
5735; c) S. H. Heinemann, T. Hoshi, M. Westerhausen, A. Schiller, Chem.
Commun. 2014, 50, 3644–3660; d) A. Romão, W. A. Blättler, J. D. Seixas,
G. J. L. Bernardes, Chem. Soc. Rev. 2012, 41, 3571–3583.
[6] a) R. Motterlini, L. E. Otterbein, Nat. Rev. Drug Discovery 2010, 9, 728–
743; b) X. Ji, B. Wang, Pharm. Pat. Anal. 2017, 6, 171–177; c) M. Kourti,
W. G. Jiang, J. Cai, Oxidative Medicine and Cellular Longevity 2017, Article
ID 9326454, 12 pages; d) K. Ling, F. Men, W.-C. Wang, Y.-Q. Zhou,
H.-W. Zhang, D.-W. Ye, J. Med. Chem. 2018, 61, 2611–2635.
[7] R. Motterlini, B. Haas, R. Foresti, Medical. Gas Res. 2012, 2, 28.
[8] a) S. Romanski, B. Kraus, U. Schatzschneider, J.-M. Neudorfl, S. Amslinger,
H.-G. Schmalz, Angew. Chem. Int. Ed. 2011, 50, 2392–2396; Angew. Chem.
2011, 123, 2440; b) S. Romanski, B. Kraus, M. Guttentag, W. Schlundt, H.
Rucker, A. Adler, J. M. Neudorfl, R. Alberto, S. Amslinger, H.-G. Schmalz,
Dalton Trans. 2012, 41, 13862–13875; c) S. Botov, E. Stamellou, S. Roman-
ski, M. Guttentag, R. Alberto, J.-M. Neudörfl, B. Yard, H.-G. Schmalz, Orga-
nometallics 2013, 32, 3587–3594; d) S. Romanski, H. Rücker, E. Stamellou,
M. Guttentag, J.-M. Neudörfl, R. Alberto, S. Amslinger, B. Yard, H.-G.
Schmalz, Organometallics 2012, 31, 5800–5809; e) N. S. Sitnikov, Y. Li, D.
Zhang, B. Yard, H.-G. Schmalz, Angew. Chem. Int. Ed. 2015, 54, 12314–
12318; Angew. Chem. 2015, 127, 12489; f) C. Steiger, K. Uchiyama, T.
Takagi, K. Mizushima, Y. Higashimura, M. Gutmann, C. Hermann, S. Botov,
H.-G. Schmalz, Y. Naito, L. Meinel, J. Controlled Release 2016, 239, 128–
136; g) B. Bauer, A.-L. Göderz, H. Braumüller, J. M. Neudörfl, M. Röcken,
3
5.65 (d, J = 4.3 Hz, 1H), 5.36 (ψ s, 1H), 4.47 (m, 1H), 4.30–4.06 (m,
1H), 3.66 (m, 2H), 3.35–3.14 (m, 4H), 3.09 (dd, 2J = 13.9 Hz, 3J =
3.9 Hz, 1H), 2.97–2.62 (m, 5H), 2.21–2.00 (m, 1H), 1.93–1.71 (m, 4H),
1.71–1.16 (m, 8H), 0.98 (d, 3J = 6.9 Hz, 3H). 13C NMR: Multiple signal
sets are observed due to the presence of diastereomers and amide
rotamers; see the SI. HRMS (ESI): calcd. for C35H48N7O10Fe [M –
HCOO]+ 782.2807, found 782.2809; calcd. for C35H47N7O10FeNa [M
– HCOOH + Na]+ 804.2626, found 804.2620. IR (ATR): ν = 3268 (s br,
˜
NH), 2044 (s, Fe(CO)3), 1962 (s, Fe(CO)3), 1662 and 1635 and 1602
(s, C=O), 1548 (s, C=O) cm–1
.
Synthesis of Complex 4: To a solution of peptide 25 (1 equiv.,
0.074 mmol, 60 mg) in anhydrous DMF (1.6 mL) stirred under argon
at room temperature were sequentially added rac-12 (1.5 equiv.,
0.111 mmol, 45 mg) and trimethylamine (2 equiv., 0.148 mmol,
21 μL). After 10 minutes the solvent was removed under reduced
pressure and the resulting solid was purified by column chromatog-
raphy on silica gel (DCM/MeOH, 10:1) to give 26 (71 mg of still
containing traces of DMF and p-nitrophenol; i.e. 64.5 mg, 85 %)
as a white solid which was further used following the same alloc
deprotection protocol as described above in the synthesis of com-
plex 2. 0.058 mmol of 26 were reacted to give 4 (46 mg, 80 %) as
T. Wieder, H.-G. Schmalz, ChemMedChem 2017, 12, 1–5.
[9] A. J. Atkin, J. M. Lynam, B. E. Moulton, P. Sawle, R. Motterlini, N. M. Boyle,
M. T. Pryce, I. J. S. Fairlamb, Dalton Trans. 2011, 40, 5755–5761.
[10] R. Motterlini, R. A. Alberto, Patent WO 2005/013691 A1, 2005.
[11] U. Schatzschneider, Inorg. Chim. Acta 2011, 374, 19–23.
[12] a) X. Ji, K. Damera, Y. Zheng, B. Yu, L. E. Otterbein, B. Wang, J. Pharm. Sci.
2016, 105, 406–416; b) J. S. Ward, Organomet. Chem. 2015, 40, 140–176.
[13] a) S. Romanski, E. Stamellou, J. T. Jaraba, D. Storz, B. K. Krämer, M. Hafner,
S. Amslinger, H.-G. Schmalz, B. A. Yard, Free Radical Biol. Med. 2013, 65,
78–88; b) E. Stamellou, D. Storz, S. Botov, E. Ntasis, J. Wedel, S. Sollazzo,
1
a pale brownish solid. H NMR (500 MHz, CD3OD): δ = 8.52 (s, 1H),
3
3
7.63 (d, J = 7.7 Hz, 2H), 7.36 (d, J = 7.7 Hz, 2H), 7.29–7.14 (m, 5H),
5.61–5.50 and 5.39–5.32 (both m, overall 1H), 5.24–5.19 and 5.14–
5.01 (both m, overall 2H), 4.54 (dd, 3J = 10.0 Hz, 3J = 4.8 Hz, 1H),
3
3
3
4.47 (dd, J = 9.8 Hz, J = 4.7 Hz, 1H), 4.21 (q, J = 7.0 Hz, 1H), 3.81
(d, 2J = 16.4 Hz, 1H), 3.77–3.58 (m, 2H), 3.58–3.20 (m, 5H), 3.04–2.77
3
(m, 10H), 2.01–1.62 (m, 7H), 1.58–1.37 (m, 6H), 1.20 (d, J = 7.0 Hz,
1H). 13C NMR: Multiple signal sets are observed due to the presence
Eur. J. Org. Chem. 2019, 1–9
7
© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim