With nanosecond time-resolved transient absorption and spin
density analyses, we confirmed that the triplet excited state of the
dyads is exclusively localized on the PBI unit. Thus ‘‘ping-pong’’
ET from PBI to C60 and in turn backward from C60 to
PBI produces the PBI localized T1 state. The dyads were used
as a singlet oxygen (1O2) photosensitizer for photooxidation of
1,5-dihydroxy-naphthalene. The photooxidation with C60 dyads
is more efficient than with the conventional Ir(III) complex
photosensitizer. Our result is useful for design of universal visible
light-harvesting organic triplet photosensitizers and for the
applications of these dyads in photocatalysis, photooxidation,
photodynamic therapy (PDT), etc.
Fig. 5 Absorption spectral change for the photooxidation of DHN
using (a) PBI-C60. (b) Plots of ln(A/A0) vs. irradiation time (t) for the
photooxidation of DHN using different sensitizers. c [sensitizers] =
We thank the NSFC (20972024 and 21073028), Royal
Society (China–UK Cost-Share program, 21011130154) and
Ministry of Education (NCET-08-0077) for financial support.
2.0
Â
10À5 mol LÀ1
,
c
[DHN]
=
2.0
Â
10À4 mol LÀ1
.
In CH2Cl2–MeOH (9/1, v/v), 20 1C.
3
Upon irradiation of PBI-C60 in aerated solution, O2 was
Notes and references
1
sensitized to O2 by the dyad, DHN was then oxidized by the
1 R. Elmes, M. Erby, S. Cloonan, S. Quinn, D. C. Williams and
T. Gunnlaugsson, Chem. Commun., 2011, 47, 686.
2 S. Takizawa, R. Aboshi and S. Murata, Photochem. Photobiol.
Sci., 2011, 10, 895.
3 S. Park, H. Baik, Y. Oh, K. Oh, Y. Youn and E. Lee, Angew.
Chem., Int. Ed., 2011, 50, 1644.
4 (a) X. Wang, S. Goeb, Z. Ji, N. Pogulaichenko and F. Castellano,
Inorg. Chem., 2011, 50, 705; (b) S. Jasimuddin, T. Yamada,
K. Fukuju, J. Otsuki and K. Sakai, Chem. Commun., 2010, 46, 8466.
5 (a) J. Zhao, S. Ji, W. Wu, W. Wu, H. Guo, J. Sun, H. Sun, Y. Liu,
Q. Li and L. Huang, RSC Adv., 2012, 2, 1712; (b) W. Wu, H. Guo,
W. Wu, S. Ji and J. Zhao, J. Org. Chem., 2011, 76, 7056.
6 (a) N. Turro, V. Ramamurthy and J. Scaiano, Principles of
Molecular Photochemistry: An Introduction, University Science
Books, Sausalito, CA, 2009; (b) W.-Y. Wong and C.-L. Ho,
Coord. Chem. Rev., 2009, 253, 1709; (c) P.-H. Lanoe,
J.-L. Fillaut, L. Toupet, J. A. G. Williams, H. L. Bozeca and
V. Guerchais, Chem. Commun., 2008, 4333.
7 H. Chen, C. Hung, K. Wang, H. Chen, W. Fann, F. Chien, P. Chen,
T. Chow, C. Hsu and S. Sun, Chem. Commun., 2009, 45, 4604.
8 (a) J. Arbogast, A. Darmanyan, C. Foote, Y. Rubin, F. Diederich,
M. Alvarez, S. Anz and R. Whetten, J. Phys. Chem., 1991, 95, 11;
reactive 1O2, thus the characteristic absorption of DHN at
301 nm decreased and the absorption of the oxidation product
juglone at 427 nm developed (Fig. 5a).2
The photooxidation reaction rate constants (kobs) with
PBI-C60 (3.0 Â 10À2 minÀ1) is much larger than that with
Ir-1 (4.5 Â 10À3 minÀ1), and C60 (9.7 Â 10À3 minÀ1) (Fig. 5b
and Table 1). We attribute the enhanced photosensitizing
ability of PBI-C60 to its strong absorption of visible light
and a long-lived T1 excited state. Previously C60 derivatives
were used for sensitizing reactive oxygen species, but the
sensitizer worked well in the UV range.10,11 A slightly less
efficient 1O2 sensitizing ability was found for NPBI-C60, due to
its lower intramolecular ET efficiency (Fig. 3). PBI-C60 shows
a better photosensitizing property than the typical organic
triplet sensitizer methylene blue (MB) and its efficiency is
comparable to that of TPP (Fig. 5b). No photobleaching
was observed for the sensitizers (see ESIw for details).
¨
(b) S. Nagl, C. Baleiza, S. M. Borisov, M. Schaferling, M. N.
¨
Berberan-Santos and O. S. Wolfbeis, Angew. Chem., Int. Ed., 2007,
In summary, perylenebisimide (PBI)–C60 dyads with strong
absorption of visible light, a long-lived triplet excited state and
efficient intramolecular energy transfer (ET) were prepared.
´
46, 2317; (c) H. Isla, B. Grimm, E. M. Pe
Herranz, R. Viruela, J. Arago, E. Ortı
N. Martın, Chem. Sci., 2012, 3, 498.
´
erez, M. R. Torres, M. A.
´
´
, D. M. Guldi and
´
9 (a) T. Chamberlain, E. Stephen Davies, A. Khlobystov and
N. Champness, Chem.–Eur. J., 2011, 17, 3759; (b) L. Y. Chiang,
P. A. Padmawar, J. E. Rogers-Haley, G. So, T. Canteenwala,
S. Thota, L.-S. Tan, K. Pritzker, Y.-Y. Huang, S. K. Sharma,
D. Balachandran Kurup, M. R. Hamblin, B. Wilsone and
A. Urbas, J. Mater. Chem., 2010, 20, 5280; (c) A. N. Amin,
M. E. El-Khouly, N. K. Subbaiyan, M. E. Zandler, S. Fukuzumi
and F. D’Souza, Chem. Commun., 2012, 48, 206.
Table 1 Photophysical parameters of the compounds and the model
triplet photosensitizer Ir-1, 5,10,15,20-tetraphenylporphyrin (TPP)
and methylene blue (MB)a
c
e
labs
eb
lem FF (%) td/ms
kobs
PBI-C60
PBI-Ph
NPBI-C60 286, 634 9.39, 2.54 735 0.5
327, 537 5.98, 4.37 572 0.7
535 4.20 575 36.0
105.9 30.0
f
f
—
12.6
—
—
22
—
10 F. Prat, C. Martı, S. Nonell, X. Zhang, C. Foote, R. Moreno,
´
f
f
J. Bourdelande and J. Font, Phys. Chem. Chem. Phys., 2001, 3, 1638.
11 D. Takahashi, S. Hirono and K. Toshima, Chem. Commun., 2011,
47, 11712.
12 R. Ziessel, B. Allen, D. Rewinska and A. Harriman, Chem.–Eur. J.,
2009, 15, 7382.
13 C. Hofmann, S. Lindner, M. Ruppert, A. Hirsch, S. Haque,
NPBI-Ph
C60
Ir-1
629
335
371
419
533
2.51
6.44
0.70
32.1
2.0
728 1.3
706 o0.1%
40.0
0.77
82.5
9.7
4.5
43.2
23.1
584 0.5
f
TPP
MB
650
654
—
—
f
f
—
a
b
In toluene. c = 1.0 Â 10À5 mol dmÀ3
.
Molar extinction coefficient at
c
. Fluorescence quantum yields
M. Thelakkat and J. Kohler, J. Phys. Chem. B, 2010, 114, 9148.
¨
the absorption maxima. e: 104/MÀ1 cmÀ1
in toluene, with 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-
14 R. Iglesias, C. Claessens, T. Torres, G. Aminur Rahman and
D. Guldi, Chem. Commun., 2005, 41, 2113.
15 A. Rachford, S. Goeb and F. Castellano, J. Am. Chem. Soc., 2008,
130, 2766.
16 J. Yarnell, J. Deaton, C. McCusker and F. Castellano, Inorg.
Chem., 2011, 50, 7820.
d
4H-pyran (DCM) as the standard (FF = 0.1 in CH2Cl2). Triplet
lifetimes, measured by transient absorption. Pseudo-first-order rate
constant. ln(Ct/C0) = Àkobst. In 10À3 minÀ1
e
f
.
Not determined.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3751–3753 3753