V. H. Jadhav et al. / Tetrahedron Letters 53 (2012) 2051–2053
2053
liquid [hexaEGmim][OMs] could increase both the reaction rate
Supplementary data
and the chemoselectivity significantly in this deprotection reac-
tion, affording the phenol product 2 in a 93% yield with only 6%
of the diol 3. Moreover, the deprotection reaction using [dihexaE-
Gim][OMs] containing two hydroxyl components could remove
only the TBDMS group of the phenolic position in the bis-TBDMS
ether 1 within 40 min, providing phenol 2 in nearly quantitative
yield (97%, entry 5).13 However, the same reaction in CH3CN sol-
vent instead of tert-alcohol showed a relatively low chemoselectiv-
ity and afforded phenol 2 in a 71% yield together with diol 3 in a
29% yield (entry 6). In addition, at 100 °C, only the diol compound
3 could be obtained nearly quantitatively (entry 7). These results
suggest that the tailor-made ionic liquid [hexaEGmim][OMs] and
[dihexaEGim][OMs] can generate the activated fluoride from alka-
li-metal fluoride such as CsF efficiently by phase-transfer effect,
thereby increasing the reaction rate, and also the protic atmo-
sphere from both tert-alcohol media and hydroxyl group of these
ionic liquids (in particular, two hydroxyl group of [dihexaE-
Gim][OMs]) can reduce the basicity of the activated fluoride, there-
by enhancing the chemoselectivity of the phenolic desilylation
reaction in the presence of aliphatic silyl ethers. Entry 8 shows
that, when using KF as the fluoride source, the selective phenolic
desilylation reaction also proceeded smoothly, affording phenol 2
in good yield.
Table 2 shows the selective phenolic desilylation of various bis-
TBDMS ethers with CsF using 0.5 equiv of [dihexaEGim][OMs] cat-
alyst in tert-amyl alcohol. This protocol allowed the selective
deprotection of the phenolic TBDMS ether in the presence of vari-
ous sec-alkyl or benzylic TBDMS ethers to proceed nearby quanti-
tatively in a series of bis-TBDMS ether substrates (entries 1–4). In
entry 5, the monosilylated estradiol14 was obtained in a 97% yield
by this selective phenolic desilylation reaction. Entry 6 shows that
the aryl-TBDMS ether component of Kojic acid15 in the presence of
alkyl TBDMS ether could be cleaved by this deprotection method to
generate mono-silylated Kojic acid in a 90% yield. Finally, a TBDMS
group attached on the vanillin was successfully removed without
the loss of aldehyde functionality (96%, entry 7).
Supplementary data (experimental procedures and character-
ization data of all compounds) associated with this article can be
References and notes
1. See: Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.;
John Wiley & Sons: New York, 1999; Kocienski, P. J. Protecting Groups; Georg
Thieme Verlag: New York, 1994.
2. Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190–6191.
3. (a) Clark, J. H. Chem. Rev. 1980, 80, 429–452; (b) Hayai, J.-I.; Ono, N.; Kaji, A.
Tetrahedron Lett. 1968, 9, 1385–1386.
4. (a) Barnych, B.; Vatele, J. M. Synlett 2011, 2048–2052; (b) Bothwell, J. M.;
Angeles, V. V.; Carolan, J. P.; Olson, M. E.; Mohan, R. S. Tetrahedron. Lett. 2010, 51,
1056–1058; (c) Jadhav, V. H.; Borate, H. B.; Wakharkar, R. D. Ind. J. of Chem. sec. B
2006, 45, 322–324; (d) Bartoli, G.; Cupone, G.; Dalpozzo, R.; De Nino, A.; Maiuolo,
L.; Procopio, A.; Sambri, L.; Tararelli, A. Tetrahedron Lett. 2002, 43, 5945–5947; (e)
Sabitha, G.; Babu, R. S.; Reddy, E. V.; Srividya, R.; Yadav, J. S. Adv. Synth. Catal.
2001, 343, 169–170; (f) Jackson, S. R.; Johnson, M. G.; Mikami, M.; Shiokawa, S.;
Carreira, E. M. Angew. Chem., Int. Ed. 2001, 40, 2694–2697; (g) Crouch, R. D.;
Polizzi, J. M.; Cleiman, R. A.; Yi, J.; Romany, C. A. Tetrahedron Lett. 1999, 40, 1985–
1988; (h) Oriyama, T.; Kobayashi, Y.; Noda, K. Synlett 1998, 1047–1048; (i)
Farras, J.; Serra, C.; Vilarrasa, J. Tetrahedron Lett. 1998, 39, 327–330.
5. (a) Prakash, C.; Saleh, S.; Blair, I. A. Tetrahedron Lett. 1994, 35, 7565–7568; (b)
Zubaidha, P. K.; Bhosale, S. V.; Hashmi, A. M. Tetrahedron Lett. 2002, 43, 7277–
7279.
6. (a) Just, G.; Zamboni, R. Can. J. Chem. 1978, 56, 2725–2730; (b) Schmittling, E. A.;
Sawyer, J. S. Tetrahedron. Lett. 1991, 32, 7207–7210; (c) Karimi, B.; Zamani, A.;
Zareyee, D. Tetrahedron. Lett. 2004, 45, 9139–9141; (d) Gopinath, P.; Nilaya, S.;
Muraleedharan, K. M. Org. Lett. 2011, 13, 1932–1935; (e) Gloria, P. M. C.;
Prabhakar, S.; Lobo, A. M.; Gomes, M. J. S. Tetrahedron Lett. 2003, 44, 8819–8821.
7. (a) Corey, E. J.; Jones, G. B. J. Org. Chem. 1992, 57, 1028–1029; (b) de Vries, E. F.
J.; Brussee, J.; van der Gen, A. J. Org. Chem. 1994, 59, 7133–7137; (c) Cormier, J.
F. Tetrahedron. Lett. 1991, 32, 187–188.
8. (a) Wilson, N. S.; Keay, B. S. Tetrahedron. Lett. 1997, 38, 187–190; (b) Jiang, Z.-Y.;
Wang, Y.-G. Tetrahedron. Lett. 2003, 44, 3859–3861; (c) Crouch, R. D.; Stieff, M.;
Frie, J. L.; Cadwallader, A. B.; Bevis, D. C. Tetrahedron Lett. 1999, 40, 3133–3136.
9. For reviews on ionic liquids, see: (a) Greaves, T. L.; Drummond, C. L. Chem. Rev.
2008, 108, 206–237; (b) Dupont, J.; Suarez, P. A. Z. Phys. Chem. Chem. Phys. 2006,
8, 2442–2452; (c) Parvulescu, V. I.; Hardcare, C. Chem. Rev. 2007, 107, 2615–
2665; (d) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667–
3692; (e) Sheldon, R. Chem. Commun. 2001, 2399–2407; (f) Wasserscheid, P.;
Kein, W. Angew. Chem., Int. Ed. 2000, 39, 3772–3789.
10. (a) Kim, D. W.; Song, C. E.; Chi, D. Y. J. Am. Chem. Soc. 2002, 124, 10278–10279;
(b) Kim, D. W.; Song, C. E.; Chi, D. Y. J. Org. Chem. 2003, 68, 4281–4285.
11. (a) Kim, D. W.; Ahn, D.-S.; Oh, Y.-H.; Lee, S.; Kil, H. S.; Oh, S. J.; Lee, S. J.; Kim, J.
S.; Ryu, J. S.; Moon, D. H.; Chi, D. Y. J. Am. Chem. Soc. 2006, 128, 16394–16397;
(b) Kim, D. W.; Jeong, H.-J.; Lim, S. T.; Sohn, M.-H. Angew. Chem., Int. Ed. 2008,
47, 8404–8406.
In summary, we have developed an efficient method for the
selective deprotection of TBDMS-protected phenols in the presence
of TBDMS-protected alkyl alcohols with alkali-metal fluoride using
tailor-made ionic liquids ([dihexaEGim][OMs]) in tert-alcohol. This
[dihexaEGim][OMs]/tert-alcohol media system can enhance the
reaction rate as well as the selectivity of the phenolic deprotection
reaction using CsF significantly. Moreover, this protocol was very
useful to synthesize various mono-silylated compounds.
12. Jadhav, V. H.; Jeong, H.-J.; Lim, S. T.; Sohn, M.-H.; Kim, D. W. Org. Lett. 2011, 13,
2502–2505.
13. Typical Procedure of selective deprotection of phenolic TBDMS-ether (Entry 5 in
Table 1): CsF (456 mg, 3 mmol) was added to the mixture of tert-butyl(3-(40-
(tert-butyldimethylsilyloxy)biphenyl-4-yloxy)propoxy)dimethylsilane
(1)
(473 mg, 1.0 mmol), [dihexaEGmim][OMs] (346 mg, 0.5 mmol) and t-amyl
alcohol (4 L) in reaction vial. The reaction mixture was stirred over 40 in at
70 °C. We determined the reaction time by checking TLC. The reaction mixture
was filtered and washed with diethyl ether. The filtrate was evaporated under
reduced pressure. Flash column chromatography (5% EtOAc/hexanes) of the
Acknowledgments
filtrate
afforded
347 g
(0.97 mol,
97%)
of
40-(3-tert-
This work was supported by the Nuclear Research & Develop-
ment Program of the National Research Foundation of Korea
(NRF) Grant funded by the Korean government (MEST) (Grant
code: 2011-0006322 and 2011-0030952), the Conversing Research
Center Program through the MEST (Grant code: 2011K000705) and
research funds of Chonbuk National University in 2011.
butyldimethylsilyloxy)propoxy)biphenyl-4-ol (2).
14. (a) Li, M.-J.; Greenblatt, H. M.; Dym, O.; Albeck, S.; Pais, A.; Gunanathan, C.;
Milstein, D.; Degani, H.; Sussman, J. L. J. Med. Chem. 2011, 10, 3575–3580; (b)
Vasconsuelo, A.; Pronsato, L.; Ronda, A. C.; Boland, R.; Milanesi, L. Steroid 2011,
76, 1223–1231.
15. Mi, A. S.; Sik, R. H.; Soo, B. H. Bioorg. Med. Chem. Lett. 2011, 21, 7466–7469.