Page 7 of 9
ACS Catalysis
Protected Amines: An Alternative to the Curtius Rearrangement. J.
REFERENCES
Am. Chem. Soc. 2017, 139, 12153-12156.
1
2
3
4
5
6
7
8
(1) (a) Mann, A., Amino-Based Building Blocks for the
Construction of Biomolecules. In Amino Group Chemistry, Ricci, A.,
Ed. WILEY-VCH: Weinheim, 2008; pp 207-256; (b) Ćirić-
Marjanović, G., Recent Advances in Polyaniline Research:
Polymerization Mechanisms, Structural Aspects, Properties and
Applications. Synth. Met. 2013, 177, 1-47; (c) Vitaku, E.; Smith, D.
T.; Njardarson, J. T., Analysis of the Structural Diversity,
Substitution Patterns, and Frequency of Nitrogen Heterocycles
among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014,
57, 10257-10274.
(8) Mao, R.; Frey, A.; Balon, J.; Hu, X., Decarboxylative C(sp3)–N
Cross-Coupling via Synergetic Photoredox and Copper Catalysis.
Nat. Catal. 2018, 1, 120-126.
(9) (a) Liang, Y.; Zhang, X.; MacMillan, D. W. C., Decarboxylative
sp3 C–N Coupling via Dual Copper and Photoredox Catalysis.
Nature 2018, 559, 83-88; (b) Nguyen, V. T.; Nguyen, V. D.; Haug, G.
C.; Vuong, N. T. H.; Dang, H. T.; Arman, H. D.; Larionov, O., Visible
Light-Enabled Direct Decarboxylative N-Alkylation. Angew. Chem.
Int. Ed. 2020, 59, 7921-7927.
9
(10) (a) Kharasch, M.; Fono, A., Communications - Radical
Substitution Reactions. J. Org. Chem. 1958, 23, 325-326; (b)
Pelletier, G.; Powell, D. A., Copper-Catalyzed Amidation of Allylic
and Benzylic C–H Bonds. Org. Lett. 2006, 8, 6031-6034; (c) Zhang,
Y.; Fu, H.; Jiang, Y.; Zhao, Y., Copper-Catalyzed Amidation of sp3
C−H Bonds Adjacent to a Nitrogen Atom. Org. Lett. 2007, 9, 3813-
3816; (d) Wiese, S.; Badiei, Y. M.; Gephart, R. T.; Mossin, S.;
Varonka, M. S.; Melzer, M. M.; Meyer, K.; Cundari, T. R.; Warren, T.
H., Catalytic C–H Amination with Unactivated Amines through
Copper(II) Amides. Angew. Chem. Int. Ed. 2010, 49, 8850-8855.
(e) Gephart, R. T.; Warren, T. H., Copper-Catalyzed sp3 C–H
Amination. Organometallics 2012, 31, 7728-7752; (f) Ramirez, T.
A.; Zhao, B.; Shi, Y., Recent Advances in Transition Metal-Catalyzed
sp3 C–H Amination Adjacent to Double Bonds and Carbonyl
Groups. Chem. Soc. Rev. 2012, 41, 931-942; (g) Tran, B. L.; Li, B.;
Driess, M.; Hartwig, J. F., Copper-Catalyzed Intermolecular
Amidation and Imidation of Unactivated Alkanes. J. Am. Chem. Soc.
2014, 136, 2555-2563; (h) Teng, F.; Sun, S.; Jiang, Y.; Yu, J.-T.;
Cheng, J., Copper-Catalyzed Oxidative C(sp3)–H/N–H Coupling of
Sulfoximines and Amides with Simple Alkanes via a Radical
Process. Chem. Commun. 2015, 51, 5902-5905; (i) Xiao, J.; Su, Q.;
Dong, W.; Peng, Z.; Zhang, Y.; An, D., Copper-Catalyzed Oxidative
(2) (a) Lawrence, S. A., Substitution on the Amine Nitrogen
(Replacement of Halogen Functionalities). In Science of Synthesis,
Enders, D.; Schaumann, E., Eds. Thieme: Stuttgart, 2009; Vol. 40,
pp 523-547; (b) Peacock, D. M.; Roos, C. B.; Hartwig, J. F.,
Palladium-Catalyzed Cross Coupling of Secondary and Tertiary
Alkyl Bromides with a Nitrogen Nucleophile. ACS Cent. Sci. 2016,
2, 647-652.
(3) (a) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J.,
Borrowing Hydrogen in the Activation of Alcohols. Adv. Synth.
Catal. 2007, 349, 1555-1575; (b) Yang, Q.; Wang, Q.; Yu, Z.,
Substitution of Alcohols by N-Nucleophiles via Transition Metal-
Catalyzed Dehydrogenation. Chem. Soc. Rev. 2015, 44, 2305-2329;
(c) Hoshimoto, Y.; Ogoshi, S., Triarylborane-Catalyzed Reductive
N-Alkylation of Amines: A Perspective. ACS Catal. 2019, 9, 5439-
5444; (d) Irrgang, T.; Kempe, R., 3d-Metal Catalyzed N- and C-
Alkylation Reactions via Borrowing Hydrogen or Hydrogen
Autotransfer. Chem. Rev. 2019, 119, 2524-2549.
(4) (a) Reznichenko, A. L.; Hultzsch, K. C., Early Transition
Metal (Group 3–5, Lanthanides and Actinides) and Main Group
Metal (Group 1, 2, and 13) Catalyzed Hydroamination. Top.
Organomet. Chem. 2013, 43, 51-114; (b) Nishina, N.; Yamamoto,
Y., Late Transition Metal-Catalyzed Hydroamination. Top.
Organomet. Chem. 2013, 43, 115-143.
(5) (a) Díaz-Requejo, M. M.; Pérez, P. J., Coinage Metal Catalyzed
C−H Bond Functionalization of Hydrocarbons. Chem. Rev. 2008,
108, 3379-3394; (b) Collet, F.; Lescot, C.; Dauban, P., Catalytic C–H
Amination: the Stereoselectivity Issue. Chem. Soc. Rev. 2011, 40,
1926-1936; (c) Singh, R.; Mukherjee, A., Metalloporphyrin
Catalyzed C–H Amination. ACS Catal. 2019, 9, 3604-3617; (d)
Bakhoda, A.; Jiang, Q.; Badiei, Y. M.; Bertke, J. A.; Cundari, T. R.;
Warren, T. H., Copper-Catalyzed C(sp3)−H Amidation: Sterically
Driven Primary and Secondary C−H Site-Selectivity. Angew. Chem.
Int. Ed. 2019, 58, 3421-3425.
(6) (a) Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J.
C.; Fu, G. C., Transition-Metal-Catalyzed Alkylations of Amines
with Alkyl Halides: Photoinduced, Copper-Catalyzed Couplings of
Carbazoles. Angew. Chem. Int. Ed. 2013, 52, 5129-5133; (b) Do, H.-
Q.; Bachman, S.; Bissember, A. C.; Peters, J. C.; Fu, G. C.,
Photoinduced, Copper-Catalyzed Alkylation of Amides with
Unactivated Secondary Alkyl Halides at Room Temperature. J. Am.
Chem. Soc. 2014, 136, 2162-2167; (c) Kainz, Q. M.; Matier, C. D.;
Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C., Asymmetric
Copper-Catalyzed C-N Cross-Couplings Induced by Visible Light.
Science 2016, 351, 681-684; (d) Ahn, J. M.; Ratani, T. S.; Hannoun,
K. I.; Fu, G. C.; Peters, J. C., Photoinduced, Copper-Catalyzed
Alkylation of Amines: A Mechanistic Study of the Cross-Coupling
of Carbazole with Alkyl Bromides. J. Am. Chem. Soc. 2017, 139,
12716-12723; (e) Ahn, J. M.; Peters, J. C.; Fu, G. C., Design of a
Photoredox Catalyst that Enables the Direct Synthesis of
Carbamate-Protected Primary Amines via Photoinduced, Copper-
Catalyzed N-Alkylation Reactions of Unactivated Secondary
Halides. J. Am. Chem. Soc. 2017, 139, 18101-18106; (f) Matier, C.
D.; Schwaben, J.; Peters, J. C.; Fu, G. C., Copper-Catalyzed Alkylation
of Aliphatic Amines Induced by Visible Light. J. Am. Chem. Soc.
2017, 139, 17707-17710.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Alkylation
(Methylation)
of
Phosphonamides
and
Phosphinamides Using Dicumyl Peroxide. J. Org. Chem. 2017, 82,
9497-9504; (j) Wang, C.-S.; Wu, X.-F.; Dixneuf, P. H.; Soulé, J.-F.,
Copper-Catalyzed Oxidative Dehydrogenative C(sp3)−H Bond
Amination of (Cyclo)Alkanes using NH-Heterocycles as Amine
Sources. ChemSusChem 2017, 10, 3075-3082.
(11) Duh, Y.-S.; Hui wu, X.; Kao, C.-S., Hazard Ratings for
Organic Peroxides. Process Saf. Prog. 2008, 27, 89-99.
(12) (a) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K., C–H Bond
Functionalization: Emerging Synthetic Tools for Natural Products
and Pharmaceuticals. Angew. Chem. Int. Ed. 2012, 51, 8960-9009;
(b) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S.
W., The Medicinal Chemist's Toolbox for Late Stage
Functionalization of Drug-Like Molecules. Chem. Soc. Rev. 2016,
45, 546-576.
(13) Take aim. Nat. Chem. 2012, 4, 955.
(14) The decreased yield of the scale up reaction is presumably
due to the lower cooling capacity of the lager scale up reactor (see
Scheme S2).
(15) (a) Kochi, J. K., Chemistry of Alkoxy Radicals: Cleavage
Reactions. J. Am. Chem. Soc. 1962, 84, 1193-1197; (b) Walling, C.;
Padwa, A., Positive Halogen Compounds. VI. Effects of Structure
and Medium on the β-Scission of Alkoxy Radicals. J. Am. Chem. Soc.
1963, 85, 1593-1597; (c) Bacha, J. D.; Kochi, J. K., Polar and
Solvent Effects in the Cleavage of t-Alkoxy Radicals. J. Org. Chem.
1965, 30, 3272-3278.
(16) Borges dos Santos, R. M.; Muralha, V. S. F.; Correia, C. F.;
Simões, J. A. M., Solvation Enthalpies of Free Radicals:ꢀ O−O Bond
Strength in Di-tert-butylperoxide. J. Am. Chem. Soc. 2001, 123,
12670-12674.
(17) Luo, Y.-R., Comprehensive Handbook of Chemical Bond
Energies, CRC Press, Boca Raton, USA (FL), 2007.
(18) The small amounts of 3,4-diphenylhexane with low
conversion of styrene may result from the lower DTBP photolysis
efficiency using 455 nm LED (Table S2, entry 9). Small amounts of
(7) Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C., Photoinduced,
Copper-Catalyzed Decarboxylative C–N Coupling to Generate
ACS Paragon Plus Environment