organisation of hydrogen bonding groups to underpin gelation.
Furthermore, this relationship is not a simple one – the nature
of functional groups present (Boc or Z) inverts the archi-
tectural effect – indeed these protecting groups play a domi-
nating role in controlling gelation. This indicates the subtlety
of molecular recognition pathways within self-assembled
peptide nanomaterials, and demonstrates the importance of
carefully optimising molecular structures to obtain the desired
materials behaviour.
We acknowledge EPSRC and Givaudan for funding
(Industrial CASE award).
Notes and references
1 (a) Molecular Gels Materials with Self-Assembled Fibrillar Networks,
ed. P. Terech and R. G. Weiss, Springer, Dordrecht, Netherlands,
2006; (b) J. W. Steed, Chem. Commun., 2011, 47, 1379–1383.
2 (a) F. Fages, F. Vogtle and M. Zinic, Top. Curr. Chem., 2005, 256,
¨
77–131; (b) J. P. Jung, J. Z. Gasiorowski and J. H. Collier,
Biopolymers, 2010, 94, 49–59.
3 (a) S. Banerjee, R. K. Das and U. Maitra, J. Mater. Chem., 2009,
19, 6649–6687; (b) A. R. Hirst, B. Escuder, J. F. Miravet and
D. K. Smith, Angew. Chem., Int. Ed., 2008, 47, 8002–8018.
4 D. K. Smith, Chem. Commun., 2006, 34–44.
Fig. 4 SEM images of xerogels formed by Z-protected gelators. A:
Linear gelator 3 dried from DCB, B: gelator 4 dried from DCB, C:
gelator 3 dried from phenetole, D: gelator 4 dried from phenetole.
Scale bars: 100 nm (A,B,D) and 200 nm (C).
5 D. K. Smith, Adv. Mater., 2006, 18, 2773–2778.
6 For selected classic and recent examples see: (a) W.-D. Jang,
D.-L. Jiang and T. Aida, J. Am. Chem. Soc., 2000, 122,
3232–3233; (b) C. Kim, K. T. Kim, Y. Chang, H. H. Song,
T.-Y. Cho and H.-J. Jeon, J. Am. Chem. Soc., 2001, 123,
5586–5587; (c) Y. Feng, Z.-T. Liu, J. Liu, Y.-M. He,
Q.-Y. Zheng and Q.-H. Fan, J. Am. Chem. Soc., 2009, 131,
7950–7951; (d) G. Palui, A. Garai, J. Nanda, A. K. Nandi and
A. Banerjee, J. Phys. Chem. B, 2010, 114, 1249–1256; (e) M. Seo,
J. H. Kim, J. Kim, N. Park, J. Park and S. Y. Kim, Chem.–Eur. J.,
2010, 16, 2427–2441; (f) X. Yang, R. Lu, F. Gai, P. Xue and
Y. Zhan, Chem. Commun., 2010, 46, 1088–1090; (g) G.-C. Kuang,
M.-J. Teng, X.-R. Jia, E.-Q. Chen and Y. Wei, Chem.–Asian J.,
2011, 6, 1163–1170; (h) G.-C. Kuang, X.-R. Jia, M.-J. Teng,
E.-Q. Chen, W.-S. Li and Y. Ji, Chem. Mater., 2012, 24, 71–80.
7 (a) A. R. Hirst and D. K. Smith, Org. Biomol. Chem., 2004, 2,
2965–2971; (b) B. Huang, A. R. Hirst, D. K. Smith, V. Castelletto
and I. W. Hamley, J. Am. Chem. Soc., 2005, 127, 7130–7139;
(c) J. G. Hardy, A. R. Hirst and D. K. Smith, Soft Matter, 2012, 8,
3399–3406.
8 A. R. Hirst, D. K. Smith, M. C. Feiters and H. P. M. Geurts,
Langmuir, 2004, 20, 7070–7077.
9 I. A. Coates, A. R. Hirst and D. K. Smith, J. Org. Chem., 2007, 72,
3937–3940.
10 A. R. Hirst, I. A. Coates, T. Boucheteau, J. F. Miravet, B. Escuder,
V. Castelletto, I. W. Hamley and D. K. Smith, J. Am. Chem. Soc.,
2008, 130, 9113–9121.
11 (a) A. R. Hirst and D. K. Smith, Langmuir, 2004, 20, 10851–10857;
(b) W. Edwards, C. A. Lagadec and D. K. Smith, Soft Matter,
2011, 7, 110–117.
Fig. 5 SEM images of A: compound 3, and B: compound 4, after
drying from DCB under low temperature conditions to create an
aerogel. Scale bar: 100 nm. Insets show larger area images.
We also applied a new approach to sample preparation in
order to image the gels formed by compounds 3 and 4 under
more representative conditions. We used critical point drying
to remove solvent under low temperature supercritical condi-
tions from samples of the gel under high vacuum, on the SEM
stub. We were able to do this in our laboratory and then
transfer the samples into the SEM machine. Remarkably, the
expanded aerogels formed during this drying process were
highly stable. Because the samples are dried at liquid nitrogen
temperatures, they are less susceptible to thermal collapse
during drying, and should be more representative of the three
dimensional solvated structure of the gel.15 This was indeed
the case, as can be seen in Fig. 5. There were some differences
in the gel networks, with linear compound 3 appearing to form
larger fibres (ca. 40 nm) than those of dendritic compound 4
(ca. 20 nm). We suggest that these larger, more aggregated
fibres may reflect greater fibril aggregation, perhaps driven by
p-stacking of the Z groups.
12 C. A. Lagadec and D. K. Smith, Chem. Commun., 2011, 47, 340–342.
13 (a) M. Suzuki and K. Hanabusa, Chem. Soc. Rev., 2009, 38,
967–975; (b) M. Suzuki, H. Saito and K. Hanabusa, Langmuir,
2009, 25, 8579–8585; (c) M. Suzuki, T. Abe and K. Hanabusa,
J. Colloid Interface Sci., 2010, 341, 69–74; (d) Y. Yang, L. Xu,
Y. Gao, Q. Fang, X. Che and S. Li, Drug Dev. Ind. Pharm., 2012,
38, 550–556.
In summary, we have demonstrated that by careful synthesis
it is possible to make linear and dendritic gelators with
identical molecular formulae, but which exhibit significantly
different organogelation characteristics, and thus elucidate the
‘true dendritic effect’ on gelation. This demonstrates that
molecular architecture plays a role in enabling the effective
14 S. R. Raghavan and B. H. Cipriano, in Gel Formation Phase
Diagrams using Tabletop Rheology and Calorimetry, Chapter 8 in
Molecular Gels, Materials with Self-Assembled Fibrillar Networks,
ed. R. G. Weiss and P. Terech, Springer, Dordrecht, Netherlands,
2006.
15 R. H. Wade, P. Terech, E. A. Hewat, R. Ramasseul and F. Volino,
J. Colloid Interface Sci., 1986, 114, 442–451.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.