5524 J. Phys. Chem. A, Vol. 104, No. 23, 2000
Cosic and Fontijn
(10) Husain, D.; Littler, J. G. F. Combust. Flame, 1974, 22, 295. These
authors do not give the temperature range for the O2 reaction. Presumably
it was the same as for the NO data shown.
(11) Ryason, P. R.; Smith, E. A. J. Phys. Chem. 1971, 75, 2259.
(12) Unless otherwise indicated the ∆H298 values were based on: Chase,
M. W., Jr. NIST-JANAF Thermochemical Tables; J. Phys. Chem. Ref. Data
1998, Monograph 9.
(13) Belyung, D. P.; Futerko, P. M.; Fontijn, A. J. Chem. Phys. 1995,
102, 155.
(14) Blue, A. S.; Belyung, D. P.; Fontijn, A. J. Chem. Phys. 1997, 107,
3791.
(15) Fontijn, A. Pure Appl. Chem. 1998, 70, 469.
(16) Fontijn, A.; Futerko, P. M. In Gas-Phase Metal Reactions; Fontijn,
A., Ed.; North-Holland: Amsterdam, 1992; Chapter 6.
(17) Slavejkov, A. G.; Futerko, P. M.; Fontijn, A. 23rd Symp. (Int.)
Combust.; The Combustion Institute: Pittsburgh, PA, 1990; p 155.
(18) Fontijn, A.; Felder, W. In ReactiVe Intermediates in the Gas-
Phase: Generation and Monitoring; Setser, D. W., Ed.; Academic Press:
New York. 1979; Chapter 2.
(19) Slavejkov, A.; Stanton, C. T.; Fontijn, A. J. Phys. Chem. 1990,
94, 3347.
(20) Irvin, J. A.; Quickenden, I. T. J. Chem. Educ. 1983, 60, 711.
(21) Felder, W.; Fontijn, A. J. Chem. Phys. 1978, 69, 1112, and
references discussed therein.
(22) Futerko, P. M.; Slavejkov, A. G.; Fontijn, A. J. Phys. Chem. 1993,
97, 11950.
(23) STANJAN (Reynolds, W. C. The Element Potential Method for
Chemical Equilibrium Analysis; Implementation in the InteractiVe Program
STANJAN; Department of Mechanical Engineering, Stanford University,
January 1986) calculation indicated that the use of N2 allowed heating to
roughly 200 K higher than with Ar for the same equilibrium dissociation.
(24) It has been previously shown19,21,34 that at typical reaction times
used in HTFFRs oxidants such as N2O, Cl2, and HCl can be used at
temperatures several hundred kelvin higher than equilibrium dissociation
would indicate. This can be attributed to kinetic constraints on the
dissociation process.
(25) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.
Numerical Recipes; Cambridge University: Cambridge, 1986; Chapter 14.
(26) Wentworth, W. E. J. Chem. Educ. 1965, 42, 96, 162.
(27) Ferguson, E. E.; Fehsenfeld, F. C.; Schmeltekopf, A. L. AdV. At.
Mol. Phys. 1969, 5, 1.
Figure 4. Arrhenius plots of the Pb + O2 rate coefficients: (O)
measurements taken using N2 and quartz reaction tube; (b) measure-
ments taken using Ar and quartz reaction tube; (]) measurements taken
using N2 and mullite reaction tube; (s) best fits to the measurements
at (a) 660-920 and (b) 1010-1340 K.
The Pb/O2 system appears dominated by heterogeneous
processes, and the apparent rate coefficient values obtained
should be considered as phenomenological for the reactor used.
In the combustion of solids such processes would dominate for
the combination of these reactants. Further studies of homoge-
neous reactions of this system would require the use of reactors
that operate essentially wall free. Such an environment can be
provided for example at lower temperatures by the equipment
in Husain’s laboratory,7-10 from 300 to 1800 K in an HTP
reactor,15,16,47 or in a shock tube.
(28) Fontijn, A.; Felder, W. J. Phys. Chem. 1979, 83, 24.
(29) Fontijn, A.; Felder, W. J. Chem. Phys. 1980, 72, 4315, and
references discussed therein.
(30) Pearse, R. W. B.; Gaydon, A. G. The Identification of Molecular
Spectra, 4th ed.; John Wiley & Sons: New York, 1976.
(31) Fontijn, A.; Blue, A. S.; Narayan, A. S.; Bajaj, P. J. Combust. Sci.
Technol. 1994, 101, 59.
(32) Narayan, A. S.; Futerko, P. M.; Fontijn, A. J. Phys. Chem. 1992,
96, 290.
(33) This is the Reynolds number for flow to fully develop in a tube,
where a is tube radius and ν bath gas viscosity; see: Potter, M. C.; Foss,
J. F. Fluid Mechanics; Great Lake Press: Okemos, MI, 1982; p 274.
(34) Rogowski, D. F.; Marshall, P.; Fontijn, A. J. Phys. Chem. 1989,
93, 1118.
(35) Vinckier, C.; Christaensen, P. J. Phys. Chem. 1992, 96, 8423.
(36) Campbell, M. L. J. Phys. Chem. 1993, 97, 3922.
(37) Vinckier, C.; Verhaele, T.; Vanhees, I. J. Chem. Soc., Faraday
Trans. 1996, 92, 1455.
Supporting Information Available: Tables 4S and 5S. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(38) Helmer, M.; Plane, J. M. C. J. Chem. Phys. 1993, 99, 7696.
(39) Plane, J. M. C.; Rajasekhar, B.; Bartolotti, L. J. Chem. Phys. 1989,
91, 6177.
(40) Husain, D.; Marshall, P. Int. J. Chem. Kinet. 1986, 18, 83.
(41) Plane, J. M. C.; Saltzman, E. S. J. Chem. Phys. 1987, 87, 4606.
(42) Belyung, D. P.; Hranisavljevic, J.; Kashireninov, O. E.; Santana,
G. M.; Fontijn, A.; Marshall, P. J. Phys. Chem. 1996, 100, 17835.
(43) Hranisavljevic, J.; Fontijn, A. J. Phys. Chem. 1997, 101, 2323.
(44) Hranisavljevic, J. Ph.D. Thesis, Rensselaer Polytechnic Institute,
1997; p 123.
Acknowledgment. This work was supported under NSF
Grants CTS-9905265 and CTS-9632492, Dr. Farley Fisher,
Program Director. We also thank William Flaherty, Charles
Fung, and Christine Brown for dedicated assistance.
References and Notes
(1) Linak, W. P.; Srivastava, R. K.; Wendt, J. O. L. Combust. Flame
1995, 100, 241.
(2) Buckley, S. G.; Sawyer, R. F.; Koshland, C. P.; Lucas, D. First
United States Section Meeting of the Combustion Institute; The Combustion
Institute: Pittsburgh, PA, 1999; p 877.
(45) Golomb, D.; Best, G. T. Trans. AGU 1974, 55, 366.
(46) Oldenborg, R. C.; Dickson, C. R.; Zare, R. N. J. Mol. Spectrosc.
1975, 58, 283.
(3) Saxena, S. C.; Jotshi, C. Prog. Energy Combust. Sci. 1996, 22,
(47) Narayan, A. S.; Slavejkov, A. G.; Fontijn, A. 24th Symp. (Int.)
Combust.; The Combustion Institute: Pittsburgh, PA, 1992; p 727.
(48) Belyung, D. P.; Fontijn, A. J. Phys. Chem. 1995, 99, 12225.
(49) Fontijn, A.; Bajaj, P. N. J. Phys. Chem. 1996, 100, 7085.
(50) Fontijn, A.; Zellner, R. In Reaction of Small Transient Species.
Kinetics and Energetics; Fontijn, A., Clyne, M. A. A., Eds.; Academic
Press: London, 1983; Chapter 1.
401.
(4) Bell, C. F.; Husain, D. J. Photochem. 1985, 29, 267.
(5) Husain, D.; Littler, J. G. F. J. Photochem. 1973/74, 2, 247.
(6) Cross, P. J.; Husain, D. J. Photochem. 1977, 7, 157.
(7) Husain, D.; Sealy, I. P. J. Photochem. 1986, 34, 245.
(8) Husain, D.; Sealy, I. P. J. Photochem. 1985, 30, 387.
(9) Husain, D.; Sealy, I. P. J. Photochem. 1986, 35, 259.