X-ray crystal structure data for 59 [C16H31NO4]:32 M =
301.43, monoclinic, space group P21, a = 5.7565(2) Å, b =
19.4300(8) Å, c = 8.1386(3) Å, β = 96.168(2)°, V = 905.02(6)
Å3, Z = 2, μ = 0.078 mm−1, colourless prism, crystal dimensions
= 0.07 × 0.08 × 0.26 mm. A total of 2122 unique reflections
were measured for 5 < θ < 27 and 1907 reflections were used
in the refinement. The final parameters were wR2 = 0.094 and
R1 = 0.043 [I > −3.0σ(I)].
9 A. Defoin, J. Pires, I. Tissot, T. Tschamber, D. Bur, M. Zehnder and
J. Streith, Tetrahedron: Asymmetry, 1991, 2, 1209.
10 S. G. Davies, A. C. Garner, R. L. Nicholson, J. Osborne, P. M. Roberts,
E. D. Savory, A. D. Smith and J. E. Thomson, Org. Biomol. Chem.,
2009, 7, 2604.
11 (a) F. Cardona, S. Valenza, A. Goti and A. Brandi, Eur. J. Org. Chem.,
1999, 1319; (b) T. Shibue, T. Hirai, I. Okamoto, N. Morita, H. Masu,
I. Azumaya and O. Tamura, Chem.–Eur. J., 2010, 16, 11678.
12 J. F. Costello, S. G. Davies and O. Ichihara, Tetrahedron: Asymmetry,
1994, 5, 1999.
13 For a review of the use of enantiopure lithium amides in synthesis, see: S.
G. Davies, P. D. Price and A. D. Smith, Tetrahedron: Asymmetry, 2005,
16, 2833.
14 S. G. Davies, M. J. Durbin, E. C. Goddard, P. M. Kelly, W. Kurosawa,
J. A. Lee, R. L. Nicholson, P. D. Price, P. M. Roberts, A. J. Russell,
P. M. Scott and A. D. Smith, Org. Biomol. Chem., 2009, 7, 761.
15 When THF was used as the solvent, the corresponding β,γ-unsaturated
ester was also isolated upon conjugate addition of lithium amides (R)-1
and (S)-1 to cis-dioxolane containing α,β-unsaturated esters 3 and 4 at
−78 °C. However, this deleterious side reaction was completely sup-
pressed when Et2O was used as the solvent and the conjugate addition
reactions were carried out at −20 °C.
16 The conjugate additions to α,β-unsaturated ester 3 were conducted in the
enantiomeric series but are represented here as the antipodes for ease of
comparison.
17 S. G. Davies and E. M. Foster, unpublished results; these data will be
reported in full in a forthcoming publication from this laboratory.
18 The conjugate additions to α,β-unsaturated ester 17 were conducted in the
enantiomeric series but are represented here as the antipodes for ease of
comparison.
19 L. A. Paquette and S. Bailey, J. Org. Chem., 1995, 60, 7849.
20 R. Appel, Angew. Chem., Int. Ed. Engl., 1975, 14, 801.
21 (a) K. Mori, Tetrahedron, 2009, 65, 3900; (b) U. Staempfli and
M. Neuenschwander, Helv. Chim. Acta, 1988, 71, 2022; (c) S. A. Ali and
M. I. M. Wazeer, J. Chem. Soc., Perkin Trans. 1, 1988, 3, 597.
22 (a) S. Thomas, T. Huynh, V. Enriquez-Rios and B. Singaram, Org. Lett.,
2001, 3, 3918; (b) G. B. Fisher, J. Harrison, J. C. Fuller, C. T. Goralski
and B. Singaram, Tetrahedron Lett., 1992, 33, 4533; (c) M. Harmata and
P. Zheng, Heterocycles, 2009, 77, 279.
23 (a) E. Nakamura, D. Machii and T. Inubushi, J. Am. Chem. Soc., 1989,
111, 6849; (b) W. F. Bailey and M. W. Carson, Tetrahedron Lett., 1999,
40, 5433; (c) K. I. Min, T. H. Lee, C. P. Park, Z. Y. Wu, H. H. Girault,
I. Ryu, T. Fukuyama, Y. Mukai and D. P. Kim, Angew. Chem., Int. Ed.,
2010, 49, 7063.
X-ray crystal structure data for 63 [C28H39NO4]:32 M =
453.62, monoclinic, space group P21, a = 7.9717(2) Å, b =
12.5518(3) Å, c = 13.0678(3) Å, β = 95.5854(9)°, V = 1301.35
(5) Å3, Z = 2, μ = 0.076 mm−1, colourless block, crystal dimen-
sions = 0.18 × 0.23 × 0.27 mm. A total of 3107 unique reflec-
tions were measured for 5 < θ < 27 and 2549 reflections were
used in the refinement. The final parameters were wR2 = 0.117
and R1 = 0.046 [I > −3.0σ(I)].
X-ray crystal structure data for 64 [C28H39NO4]:32 M =
453.62, orthorhombic, space group P212121, a = 9.3260(2) Å,
b = 13.7383(3) Å, c = 20.3169(6) Å, V = 2603.07(11) Å3, Z = 4,
μ = 0.076 mm−1, colourless block, crystal dimensions = 0.12 ×
0.15 × 0.16 mm. A total of 3316 unique reflections were
measured for 5 < θ < 27 and 2639 reflections were used in the
refinement. The final parameters were wR2 = 0.098 and R1 =
0.045 [I > −3.0(I)].
X-ray crystal structure data for 67 [C16H31NO4]:32 M =
301.43, monoclinic, space group C 2, a = 22.1832(6) Å, b =
5.8375(2) Å, c = 14.5119(4) Å, β = 105.8953(12)°, V = 1807.36
(9) Å3, Z = 4, μ = 0.078 mm−1, colourless prism, crystal dimen-
sions = 0.14 × 0.17 × 0.90 mm. A total of 2239 unique reflec-
tions were measured for 5 < θ < 27 and 2239 reflections were
used in the refinement. The final parameters were wR2 = 0.121
and R1 = 0.049 [I > −3.0(I)].
24 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1,
1975, 1574.
Notes and references
25 W. F. Bailey and E. R. Punzalan, J. Org. Chem., 1990, 55, 5404.
26 N. Faucher, Y. Ambroise, J. C. Cintrat, E. Doris, F. Pillon and
B. Rousseau, J. Org. Chem., 2002, 67, 932.
1 S. Masamune, W. Choy, J. S. Petersen and L. R. Sita, Angew. Chem., Int.
Ed. Engl., 1985, 24, 1.
2 O. I. Kolodiazhnyi, Tetrahedron, 2003, 59, 5953.
27 It was necessary to add Et3N to the reaction mixture, as otherwise the
liberation of HI catalysed in situ deprotection of the acetonide protecting
group.
28 In an effort to improve the diastereoselectivity of the olefination step an
alternative procedure was also investigated whereby Swern oxidation of
47 was followed by a MeMgBr mediated Wadsworth–Emmons olefina-
tion (see ref. 29) of intermediate aldehyde 48. This gave (E)-32 as the
sole diastereoisomer (>99 : 1 dr), which was isolated in 7% overall yield
from diol 45. The poorer yield in this case is presumably due to the need
to isolate the volatile aldehyde 48.
3 (a) S. G. Davies, G. J. Hermann, M. J. Sweet and A. D. Smith, Chem.
Commun., 2004, 1128; (b) S. G. Davies, A. M. Fletcher, G. J. Hermann,
G. Poce, P. M. Roberts, A. D. Smith, M. J. Sweet and J. E. Thomson,
Tetrahedron: Asymmetry, 2010, 21, 1635; (c) S. G. Davies, J. A. Lee,
P. M. Roberts, J. E. Thomson and J. Yin, Tetrahedron, 2011, 67, 6382.
4 K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung,
K. S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang, D. Xu and
X. L. Zhang, J. Org. Chem., 1992, 57, 2768.
5 (a) S. Y. Ko, A. W. M. Lee, S. Masamune, L. A. Reed, K. B. Sharpless
and F. J. Walker, Tetrahedron, 1990, 46, 245; (b) P. C. Ray and
S. M. Roberts, Tetrahedron Lett., 1999, 40, 1779.
6 D. Meyer, J. C. Poulin, H. B. Kagan, H. L. Pinto, J. L. Morgat and
P. Fromageot, J. Org. Chem., 1980, 45, 4680.
29 T. D. W. Claridge, S. G. Davies, J. A. Lee, R. L. Nicholson, P.
M. Roberts, A.J. Russell, A. D. Smith and S. M. Toms, Org. Lett., 2008,
10, 5437.
30 In both cases the corresponding (Z)-configured diastereoisomer [(S,S,Z)-
4,5-O-isopropylidene-4,5-dihydroxyhex-2-enoate] was also isolated in
>99 : 1 dr (in 16% overall yield from 53, and in 17% overall yield from
54).
31 N. Sewald, K. D. Hiller, M. Körner and M. Findeisen, J. Org. Chem.,
1998, 63, 7263.
32 Crystallographic data (excluding structure factors) for compounds 59, 63,
64 and 67 have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication numbers CCDC 846621–846624,
respectively‡.
33 The absolute (3R,4S,5S,αS)-configuration within 3,4-syn-72 was also
independently verified by chemical correlation: an authentic sample of
(3S,4R,5R,αR)-72 was prepared via acetonide protection of tert-butyl
7 (a) M. P. Bonner and E. R. Thornton, J. Am. Chem. Soc., 1991, 113,
1299; (b) F. Calderón, E. G. Doyagüez and A. F. Mayoralas, J. Org.
Chem., 2006, 71, 6258; (c) F. Calderón, E. G. Doyagüez, P. H. Cheong,
A. Fernández-Mayoralas and K. N. Houk, J. Org. Chem., 2008, 73,
7916; (d) D. A. Evans, J. Bartroli and T. L. Shih, J. Am. Chem. Soc.,
1981, 103, 2127; (e) L. M. Geary and P. G. Hultin, Tetrahedron: Asymme-
try, 2009, 20, 131.
8 (a) S. G. Davies, C. J. R. Hedgecock and J. M. McKenna, Tetrahedron:
Asymmetry, 1995, 6, 827; (b) T. Ishikawa, K. Nagai, T. Kndoh and
S. Saito, Synlett, 1995, 1171; (c) T. Cailleau, J. W. B. Cooke,
S. G. Davies, K. B. Ling, A. Naylor, R. L. Nicolson, P. D. Price,
P. M. Roberts, A. J. Russell, A. D. Smith and J. E. Thomson, Org.
Biomol. Chem., 2007, 5, 3922.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 6186–6200 | 6199