10.1002/anie.201804873
Angewandte Chemie International Edition
COMMUNICATION
[5]
[6]
[7]
[8]
[9]
H.-Q. Do, S. Bachman, A. C. Bissember, J. C. Peters, G. C. Fu, J. Am.
Chem. Soc. 2014, 136, 2162-2167.
olefin group. Drugs and natural products such as dehydrocholic
acid (6d), chlorambucil (6e), abietic acid (6f) and gemfibrozil (6g)
were easily transformed into their protected amine derivatives,
demonstrating the potential of the method in post-synthetic drug
and natural product modification. The cases of 5f, 6d and 6e
highlight the orthogonal functional group compatibility of the
present method compared to direct alkylation and reductive
amination: 5f has a bromo group and 6e has two chloro groups
which are incompatible with direct alkylation; 6d has three keto
groups which are incompatible with reductive amination. It is
important to note that multiple stereocenters are conserved in 6d
and 6f.
To further demonstrate the synthetic utility of the present
coupling method, it was applied for the synthesis of two drugs:
amphetamine and tranylcypromine. As shown in Figure 2, both
cases were successful, and following acidic deprotection of the
imine group, amphetamine•HCl and tranylcypromine•HCl were
obtained in 60% (7a) and 41% (7b, d.r. > 20:1) overall yields,
respectively.
In summary, tandem photoredox and Cu catalysis has been
developed to enable the cross coupling of alkyl NHPI esters with
benzophenone imines. The method allows the rapid
transformation of readily available alkyl carboxylic acids into
alkylated primary amines, which are important compounds in
medicinal and materials chemistry. The work significantly
expands the scope of C(sp3)-N coupling. Analogous tandem
photoredox and Cu catalysis may find further applications in C-C
and C-heteroatom coupling reactions.
Q. M. Kainz, C. D. Matier, A. Bartoszewicz, S. L. Zultanski, J. C. Peters,
G. C. Fu, Science 2016, 351, 681-684.
W. Zhao, R. P. Wurz, J. C. Peters, G. C. Fu, J. Am. Chem. Soc. 2017,
139, 12153–12156.
J. M. Ahn, J. C. Peters, G. C. Fu, J. Am. Chem. Soc. 2017, 139, 18101-
18106.
C. D. Matier, J. Schwaben, J. C. Peters, G. C. Fu, J. Am. Chem. Soc.
2017, 139, 17707-17710.
[10] D. M. Peacock, C. B. Roos, J. F. Hartwig, ACS Cent. Sci. 2016, 2, 647-
652.
[11] C. W. Cheung, X. Hu, Nat Commun 2016, 7, 12494.
[12] R. Mao, A. Frey, J. Balon, X. Hu, Nat. Catal. 2018, 1, 120-126.
[13] For representative examples, see: a) J. Cornella, J. T. Edwards, T. Qin,
S. Kawamura, J. Wang, C. M. Pan, R. Gianatassio, M. Schmidt, M. D.
Eastgate, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 2174-2177; b) T.
Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S. Kawamura, B. D.
Maxwell, M. D. Eastgate, P. S. Baran, Science 2016, 352, 801-805; c) F.
Sandfort, M. J. O'Neill, J. Cornella, L. Wimmer, P. S. Baran, Angew.
Chem. 2017, 129, 3367-3371; Angew. Chem., Int. Ed. 2017, 56, 3319-
3323; d) F. Toriyama, J. Cornella, L. Wimmer, T. G. Chen, D. D. Dixon,
G. Creech, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 11132-11135; e)
J. Wang, T. Qin, T.-G. Chen, L. Wimmer, J. T. Edwards, J. Cornella, B.
Vokits, S. A. Shaw, P. S. Baran, Angew. Chem. 2016, 128, 9828-9831;
Angew. Chem., Int. Ed. 2016, 55, 9676-9679.
[14] a) K. M. Huihui, J. A. Caputo, Z. Melchor, A. M. Olivares, A. M. Spiewak,
K. A. Johnson, T. A. DiBenedetto, S. Kim, L. K. Ackerman, D. J. Weix, J.
Am. Chem. Soc. 2016, 138, 5016-5019; b) C. R. Jamison, L. E. Overman,
Acc. Chem. Res. 2016, 49, 1578-1586.
[15] Y. Liang, X. Zhang, D. W. C. MacMillan, ChemRxiv 2018, doi:
10.26434/chemrxiv.5877868.v1
[16] G. Mann, J. F. Hartwig, M. S. Driver, C. Fernandez-Rivas, J. Am. Chem.
Soc. 1998, 120, 827-828.
[17] M.-C. Lamas, S. E. Vaillard, B. Wibbeling, A. Studer, Org. Lett. 2010, 12,
2072-2075.
Acknowledgements
[18] A. Laouiti, M. M. Rammah, M. B. Rammah, J. Marrot, F. Couty, G. Evano,
Org. Lett. 2012, 14, 6-9.
This work is supported by the NoNoMeCat Marie Skłodowska-
Curie training network funded by the European Union under the
Horizon 2020 Program (675020-MSCA-ITN-2015-ETN).
[19] For pioneering work and selected reviews of tandem photoredox and
nickel catalysis in C-C coupling, see: a) C. K. Prier, D. A. Rankic, D. W.
MacMillan, Chem. Rev. 2013, 113, 5322-5363; b) K. L. Skubi, T. R. Blum,
T. P. Yoon, Chem. Rev. 2016, 116, 10035-10074; c) J. C. Tellis, D. N.
Primer, G. A. Molander, Science 2014, 345, 433-436; d) Z. Zuo, D. T.
Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. C. MacMillan, Science
2014, 345, 437-440.
Keywords: photoredox · decarboxylation · C-N coupling ·
copper catalysis · alkylation
[20] For selected examples of tandem photoredox and copper catalysis, see:
a) D. Wang, N. Zhu, P. Chen, Z. Lin, G. Liu, J. Am. Chem. Soc. 2017
139, 15632-15635; b) Y. Ye, M. S. Sanford, J. Am. Chem. Soc. 2012,
134, 9034-9037; c) W.-J. Yoo, T. Tsukamoto, S. Kobayashi, Angew.
Chem. 2015, 127, 6687–6690; Angew. Chem., Int. Ed. 2015, 54, 6587–
6590; d) H. Zhang, P. Zhang, M. Jiang, H. Yang, H. Fu, Org. Lett. 2017,
19, 1016-1019; e) H. R. Zhang, D. Q. Chen, Y. P. Han, Y. F. Qiu, D. P.
Jin, X. Y. Liu, Chem. Commun. 2016, 52, 11827-11830.
[1]
[2]
[3]
S. A. Lawrence, Amines: Synthesis Properties and Applications,
Cambridge University Press, Cambridge, 2004.
A. Ricci, Amino Group Chemistry: From Synthesis to the Life Sciences,
Wiley-VCH, Weinheim, 2008.
R. N. Salvatore, C. H. Yoon, K. W. Jung, Tetrahedron 2001, 57, 7785–
7811.
[4]
A. C. Bissember, R. J. Lundgren, S. E. Creutz, J. C. Peters, G. C. Fu,
Angew. Chem. 2013, 125, 5233–5237; Angew. Chem., Int. Ed. 2013, 52,
5129-5133.
[21] Y. Jin, H. Yang, H. Fu, Chem. Commun. 2016, 52, 12909-12912
This article is protected by copyright. All rights reserved.