Organometallics
Article
volatiles were removed under reduced pressure, and to the resulting
residue was added hexane, causing precipitation of solid material. The
mixture was filtered, the resulting cake was washed with hexane, and
the resulting solid was dried in vacuo to give the complexes as pure
products. X-ray-quality crystals were obtained by slow evaporation of
toluene from the toluene/complex solution, unless stated otherwise.
7: yield 87.3%; 1H NMR (tol-d8) δ 7.18 (4H, t, 3J = 7.74 Hz), 7.07
ACKNOWLEDGMENTS
■
This research was supported by the USA-Israel Binational
Science Foundation under Contract 2008283. S.A. thanks
Raymond Rosen for his fellowship.
REFERENCES
3
3
■
(4H, br), 6.96 (2H, t, J = 7.15), 3.07 (12H, s), 2.95 (2H, m, J =
3
7.22), 0.91 (12H, d, J = 7.22 Hz); 13C NMR δ 174.4, 149.2, 137.5,
(1) Kissin, Y. V. Alkene Polymerization Reactions with Transition Metal
Catalysts, 1st ed.; Elsevier: Amsterdam, 2008; Studies in Surface
Science and Catalysis Vol. 173, pp 28−29 and references therein.
(2) (a) Lamberti, M.; Mazzeo, M.; Pappalardo, D.; Pellecchia, C.
Coord. Chem. Rev. 2009, 253, 2082−2097. (b) Takeuchi, D. Dalton
Trans. 2010, 39, 311−328. (c) Baugh, L. S.; Canich, J.-A. M. In:
Stereoselective Polymerization with Single-Site Catalysts; CRC Press:
Boca Raton, FL, 2008. (d) Givson, V. C.; Redshaw, C.; Solan, G. A.
Chem. Rev. 2007, 107, 1745−1776.
(3) (a) Delferro, M.; Marks, T. J. Chem. Rev. 2011, 111, 2450−2485
and references therein. (b) Gibson, V. C.; Spitzmesser, S. K. Chem.
Rev. 2003, 103, 283−316. (c) Makio, H.; Fujita, T. Acc. Chem. Res.
2009, 42, 1532−1544. (d) Amin, S. B.; Marks, T. J. Angew. Chem., Int.
Ed. 2008, 47, 2006−2025. (e) Vanka, K.; Xu, Z.; Seth, M.; Ziegler, T.
Top. Catal. 2005, 34, 143−164.
(4) (a) Edelmann, F. T. Adv. Organomet. Chem. 2008, 57, 183−352.
(b) Collins, S. Coord. Chem. Rev. 2011, 255, 118−138. (c) Edelmann,
F. T. Struct. Bonding (Berlin) 2010, 137, 109−163.
(5) (a) Volkis, V.; Shmulinson, M.; Averbuj, C.; Lisovskii, A.;
Edelmann, F. T.; Eisen, M. S. Organometallics 1998, 17, 3155−3157.
(b) Sita, L. R.; Babcock, J. R. Organometallics 1998, 17, 5228−5230.
(c) Zhang, Y.; Sita, L. R. Chem. Commun. 2003, 2358−2359.
(d) Kissounko, D. A.; Zabalov, M. V.; Brusova, G. P.; Lemenovskii,
D. A. Russ. Chem. Rev. 2006, 75, 351−374.
(6) Volkis, V.; Nelkenbaum, E.; Lisovskii, A.; Hasson, G.; Semiat, R.;
Kapon, M.; Botoshansky, M.; Eishen, Y.; Eisen, M. S. J. Am. Chem. Soc.
2003, 125, 2179−2194.
(7) (a) Volkis, V.; Lisovskii, A.; Tumanskii, B.; Shuster, M.; Eisen, M.
S. Organometallics 2006, 25, 2656−2666. (b) Aharonovich, S.; Volkis,
V.; Eisen, M. S. Macromol. Symp. 2007, 260, 165−171.
(8) (a) Volkis, V.; Aharonovich, S.; Eisen, M. S. Macromol. Res. 2010,
18, 967−973. (b) Volkis, V.; Lisovskii, A.; Tumanskii, B.; Shuster, M.;
Eisen, M. S. Organometallics 2006, 25, 2656−2666.
(9) (a) Aharonovich, S.; Botoshansky, M.; Balazs, Y. S.; Eisen, M. S.
Organometallics 2012, 31, 3435−3438. (b) Aharonovich, S. Hetero-
aza-allyl Complexes of Li, Ti, Zr, and V: Structure, Reactivity and
Catalytic Propylene Polymerization. Ph.D. Thesis, TechnionIsrael
Institute of Technology, 2010.
126.5, 123.4, 121.6, 47.5, 30.7. Anal. Calcd for C36H46N6Ti: C, 70.57;
H, 7.90; N, 13.72. Found: C, 70.21; H, 7.28; N, 12.08.
8: yield 91.5%; 1H NMR (tol-d8) δ 6.99 (8H, m, 3J = 7.65 Hz), 6.79
3
3
(8H, m, J = 8.24 Hz), 3.11 (12H, s), 2.94 (2H, sept, J = 7.08 Hz),
0.90 (12H, d, J = 7.06 Hz); 19F NMR δ −113.02 (2F, q, J = 8.68
Hz); 13C NMR δ 174.6, 165.8, 160.9, 150.3, 150.1, 129.5, 129.3, 47.0,
20.4. Anal. Calcd for C36H42F4N6Ti: C, 63.16; H, 6.48; N, 12.28.
Found: C, 61.66; H, 6.26; N, 11.34.
3
3
1
9: yield 86.7%; H NMR (tol-d8) δ 6.92 (8H, br), 3.16 (12H, s),
2.88 (2H, sept, 3J = 7.34 Hz), 0.89 (12H, d, 3J = 7.35 Hz); 19F NMR δ
−119.83; 13C NMR δ 174.8, 162.0, 157.2, 144.6, 144.2, 115.3, 114.8,
47.1, 30.2, 20.5. Anal. Calcd for C36H42F4N6Ti: C, 63.16; H, 6.48; N,
12.28. Found: C, 62.11; H, 7.10; N,11.52.
1
3
10: yield 92.3%; H NMR (tol-d8): δ 0.99 (12H, d, J = 6.94 Hz),
2.29 (2H, s), 2.91 (12H, m, 3J = 6.9 Hz), 7.448−6.733 (24H, m); 19
F
NMR δ −111.39 (dd, J = 12.87 Hz, J = 4.37 Hz); 13C NMR δ
172.81, 162.80, 162.16, 158.0, 157.3, 145.9, 137.5, 136.9, 136.9, 135.7,
128.3, 127.8, 125.6, 124.9, 124.2, 121.6, 121.4, 118.4, 117.3, 110.6,
110.17, 31.0, 20.0. Anal. Calcd for C52H50F3N6Ti: C, 70.58; H, 5.92;
N, 9.50. Found: C, 76.58; H, 6.54; N, 10.11.
3
4
11: yield 84.0%; X-ray-quality crystals obtained by cooling the
saturated toluene solution from 50 °C to room temperature; 1H NMR
(C6D6) δ 2.86 (s, 12H), 2.32 (sept, 3J = 7.2 Hz, 2H), 0.74 (d, 3J = 7.2
Hz, 12H); 19F NMR spectrum at room temperature consists of broad
signals that cannot be assigned properly; 13C NMR δ 179.6, 45.1, 31.5,
17.4. Anal. Calcd for C36H28F20N6Ti: C, 44.46; H, 2.90; N, 8.64.
Found: C, 44.93; H, 2.56; N, 8.17.
1
3
12: yield 76.2% H NMR (C6D6) δ 2.59 (s, 12H), 2.33 (sept, J =
6.9 Hz, 2H), 0.74 (d, J = 6.9 Hz, 12H); 19F NMR δ −148.5 (d, J =
21.5 Hz, 8F), −160.30 (t, 3J = 21.7 Hz, 4F). −163.87 (t, 3J = 18.9 Hz,
8F); 13C NMR δ 184.6, 40.3, 32.6, 19.4. Anal. Calcd for
C36H28F20N5Zr: C, 42.56; H, 2.78; N, 8.27. Found: C, 44.93; H,
2.30; N, 6.89.
3
3
Typical Procedure for Propylene Polymerization. Inside the
glovebox, 10 mg of the complex, the appropriate amount of the MAO
(1:1000 metal:Al ratio), and 6 mL of toluene were mixed and loaded
into a stainless steel reactor. The reactor was connected to the high-
vacuum line, and 30 mL of propylene was transferred into the reactor.
The reaction mixture was warmed to the desired temperature and
stirred for 3 h. The reaction was quenched with acetylacetone, and the
resulting polymer was washed with methanol followed by acetone. The
solvents were dried out in the vacuum oven at 50 °C. The resulting
material was fractionalized with hexane in a Soxhlet apparatus.
(10) (a) Brylikov, K. P. Russ. Chem. Rev. 2007, 81, 253−277 and
references therein. (b) Nokata, N.; Toda, T.; Ishii, A. Polym. Chem.
2011, 2, 1597−1610.
(11) (a) Kawai, K.; Fujita, T. Top. Organomet. Chem. 2009, 26, 3−46.
(b) Mitani, M.; Saito, J.; Ishii, S.; Nakayama, Y.; Makio, H.;
Matsukawa, N.; Matsui, S.; Mohri, J.; Furuyama, R.; Terao, H.;
Bando, H.; Tanaka, H.; Fujita, T. Chem. Rec. 2004, 4, 137−158.
(c) Sakuma, A.; Weiser, M. S.; Fujita, T. Polym. J. 2007, 39, 193−207.
(d) Makio, H.; Fujita, T. Bull. Chem. Soc. Jpn. 2005, 78, 52−66. For
other similar living systems see: (e) Tian, J.; Coates, G. W. Angew.
Chem., Int. Ed. 2000, 39, 3626−3629. (f) Tian, J.; Hustad, P. D.;
Coates, G. W. J. Am. Chem. Soc. 2001, 123, 5134−5135.
ASSOCIATED CONTENT
■
S
* Supporting Information
Figures, tables, and CIF files giving an Eyring plot for the
dynamic process in complex 11, COSY of complex 11 at high
(365 K) and low (227 K) temperatures, and crystallographic
data for ligands 3−6 and complexes 7, 9, 11, and 12. This
material is available free of charge via the Internet at http://
(12) (a) Makio, H.; Fujita, T. Acc. Chem. Res. 2009, 42, 1532−1544.
(b) Chan, M. C. W.; Kui, S. C. F.; Cole, J. M.; McIntyre, G. J.; Matsui,
S.; Zhu, N.; Tam, K.-H. Chem. Eur. J. 2006, 12, 2607−2619. (c) Kui, S.
C. F.; Zhu, N.; Chan, M. C. W. Angew. Chem., Int. Ed. 2003, 42, 1628−
1632. (d) Weberski, M. P.; Chen, C.; Delferro, M.; Zuccaccia, C.;
Macchioni, A.; Marks, T. J. Organometallics 2012, 31, 3773−3789.
(13) Ogata, S.; Mochizuki, A.; Kakimoto, M.; Imai, Y. Bull. Chem. Soc.
Jpn. 1986, 59, 2171−2177.
(14) (a) Smolensky, E.; Kapon, M.; Woollins, J. D.; Eisen, M. S.
Organometallics 2005, 24, 3255−3265. (b) Ward, B. D.; Risler, H.;
Weitershaus, K.; Bellemin-Laponnaz, S.; Wadepohl, H.; Gade, L. H.
Inorg. Chem. 2006, 45, 7777−7787. (c) Cortright, S. B.; Huffman, J.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
J
dx.doi.org/10.1021/om300702s | Organometallics XXXX, XXX, XXX−XXX