ACS Medicinal Chemistry Letters
Letter
(3) Witt, O.; Deubzer, H. E.; Milde, T.; Oehme, I. HDAC family:
What are the cancer relevant targets? Cancer Lett. 2009, 277, 8−21.
(4) Gryder, B. E.; Sodji, Q. H.; Oyelere, A. K. Targeted cancer
therapy: Giving histone deacetylase inhibitors all they need to succeed.
Future Med. Chem. 2012, 4, 505−524.
ratio (T/C) were used as the indicators to evaluate the
antitumor effects in tumor weight and tumor volume,
respectively. Our calculated results revealed that the in vivo
antitumor activity of 17a (TGI = 53%, T/C = 42%) was
statistically significant (P < 0.05), while the potency of
tamibarotene (TGI = 33%, T/C = 85%) was not statistically
significant. In the mice group treated by 17a, no significant
body weight loss and no evident toxic signs in liver and spleen
were detected.
In conclusion, we designed and synthesized a novel series of
N-hydroxycinnamamide-based HDACIs with an indole-con-
taining cap group, among which compounds 17c, 17g, 17h, 17j,
and 17k exhibited similar HDACs inhibition and in vitro
antitumor potency to SAHA. Our further research focused on
17a revealed several interesting results, which deserve a detailed
mechanism study. Importantly, although its HDACs inhibitory
activity was moderate among these analogues, 17a exhibited
potent in vitro and in vivo antitumor activity. Currently, a
detailed activity evaluation and mechanism study of 17a and
other more potent analogues are underway in our laboratory.
(5) Giannini, G.; Cabri, W.; Fattorusso, C.; Rodriquez, M. Histone
deacetylase inhibitors in the treatment of cancer: overview and
perspectives. Future Med. Chem. 2012, 4, 1439−60.
(6) Miller, T. A.; Witter, D. J.; Belvedere, S. Histone deacetylase
inhibitors. J. Med. Chem. 2003, 46, 5097−5116.
(7) Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone
deacetylase inhibitors: From bench to clinic. J. Med. Chem. 2008, 51,
1505−1529.
(8) DeSimone, R. W.; Currie, K. S.; Mitchell, S. A.; Darrow, J. W.;
Pippin, D. A. Privileged structures: Applications in drug discovery.
Comb. Chem. High Throughput Screening 2004, 7, 473−493.
(9) Costantino, L.; Barlocco, D. Privileged structures as leads in
medicinal chemistry. Curr. Med. Chem. 2006, 13, 65−85.
(10) Kamal, A.; Srikanth, Y. V.; Ramaiah, M. J.; Khan, M. N.; Kashi
Reddy, M.; Ashraf, M.; Lavanya, A.; Pushpavalli, S. N.; Pal-Bhadra, M.
Synthesis, anticancer activity and apoptosis inducing ability of
bisindole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg.
Med. Chem. Lett. 2012, 22, 571−578.
(11) Olsen, C. A.; Montero, A.; Leman, L. J.; Ghadiri, M. R.
Macrocyclic Peptoid−Peptide Hybrids as Inhibitors of Class I Histone
Deacetylases. ACS Med. Chem. Lett. 2012, 3, 749−753.
(12) Giannini, G.; Marzi, M.; Di Marzo, M.; Battistuzzi, G.; Pezzi, R.;
Brunetti, T.; Cabri, W.; Vesci, L.; Pisano, C. Exploring bis-
(indolyl)methane moiety as an alternative and innovative CAP
group in the design of histone deacetylase (HDAC) inhibitors. Bioorg.
Med. Chem. Lett. 2009, 19, 2840−2843.
(13) Attenni, B.; Ontoria, J. M.; Cruz, J. C.; Rowley, M.; Schultz-
Fademrecht, C.; Steinkuhler, C.; Jones, P. Histone deacetylase
inhibitors with a primary amide zinc binding group display antitumor
activity in xenograft model. Bioorg. Med. Chem. Lett. 2009, 19, 3081−
3084.
(14) Lai, M.-J.; Huang, H.-L.; Pan, S.-L.; Liu, Y.-M.; Peng, C.-Y.; Lee,
H.-Y.; Yeh, T.-K.; Huang, P.-H.; Teng, C.-M.; Chen, C.-S.; Chuang,
H.-Y.; Liou, J.-P. Synthesis and Biological Evaluation of 1-Arylsulfonyl-
5-(N-hydroxyacrylamide)indoles as Potent Histone Deacetylase
Inhibitors with Antitumor Activity in Vivo. J. Med. Chem. 2012, 55,
3777−3791.
(15) Pontiki, E.; Hadjipavlou-Litina, D. Histone deacetylase
inhibitors (HDACIs). Structure−activity relationships: History and
new QSAR perspectives. Med. Res. Rev. 2012, 32, 1−165.
(16) Inks, E. S.; Josey, B. J.; Jesinkey, S. R.; Chou, C. J. A novel class
of small molecule inhibitors of HDAC6. ACS Chem. Biol. 2012, 7,
331−339.
(17) Bradner, J. E.; West, N.; Grachan, M. L.; Greenberg, E. F.;
Haggarty, S. J.; Warnow, T.; Mazitschek, R. Chemical phylogenetics of
histone deacetylases. Nat. Chem. Biol. 2010, 6, 238−243.
(18) Fass, D. M.; Shah, R.; Ghosh, B.; Hennig, K.; Norton, S.; Zhao,
W. N.; Reis, S. A.; Klein, P. S.; Mazitschek, R.; Maglathlin, R. L.; Lewis,
T. A.; Haggarty, S. J. Short-Chain HDAC Inhibitors Differentially
Affect Vertebrate Development and Neuronal Chromatin. ACS Med.
Chem. Lett. 2011, 2, 39−42.
(19) Fraga, M. F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.;
Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Petrie, K.;
Iyer, N. G.; Perez-Rosado, A.; Calvo, E.; Lopez, J. A.; Cano, A.;
Calasanz, M. J.; Colomer, D.; Piris, M. A.; Ahn, N.; Imhof, A.; Caldas,
C.; Jenuwein, T.; Esteller, M. Loss of acetylation at Lys16 and
trimethylation at Lys20 of histone H4 is a common hallmark of human
cancer. Nat. Genet. 2005, 37, 391−400.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures for compound synthesis, HDACs
inhibition fluorescence assay, in vitro antiproliferative assay,
Western blot analysis, in vivo antitumor assay, and character-
ization data for new compounds. This material is available free
AUTHOR INFORMATION
■
Corresponding Author
Author Contributions
⊥These two authors contributed equally.
Funding
This work was supported by the National Scientific and
Technological Major Project of Ministry of Science and
Technology of China (Grant No. 2011ZX09401-015), National
Natural Science Foundation of China (Grant No. 21172134),
Doctoral Foundation of Ministry of Education of China (Grant
No. 20110131110037), the National Center for Research
Resources (Grant No. 5 P20 RR024485-02), and the National
Institute of General Medical Sciences (Grant No. 8 P20
GM103542-02) from the National Institutes of Health.
Notes
The authors declare no competing financial interest.
ABBREVIATIONS
■
HDACs, histone deacetylases; HDACIs, histone deacetylase
inhibitors; SAR, structure−activity relationship; Boc, tert-
butyloxycarbonyl; DCM, dichloromethane; THF, tetrahydro-
furan; PTSA, p-toluenesulfonic acid; DEAD, diethyl azodicar-
boxylate; TFA, trifluoroacetic acid; TBTU, O-(benzotriazol-1-
yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate; CDK,
cyclin-dependent kinase; VPA, valproic acid
REFERENCES
■
(1) Esteller, M. Cancer epigenomics: DNA methylomes and histone-
modification maps. Nat. Rev. Genet. 2007, 8, 286−298.
(2) Best, J. D.; Carey, N. Epigenetic opportunities and challenges in
cancer. Drug Discovery Today 2010, 15, 65−70.
238
dx.doi.org/10.1021/ml300366t | ACS Med. Chem. Lett. 2013, 4, 235−238